Search results
Results From The WOW.Com Content Network
The defining integral of arc length does not always have a closed-form expression, and numerical integration may be used instead to obtain numerical values of arc length. Determining the length of an irregular arc segment by approximating the arc segment as connected (straight) line segments is also called curve rectification .
In geometry, the sagitta (sometimes abbreviated as sag [1]) of a circular arc is the distance from the midpoint of the arc to the midpoint of its chord. [2] It is used extensively in architecture when calculating the arc necessary to span a certain height and distance and also in optics where it is used to find the depth of a spherical mirror ...
A circular segment (in green) is enclosed between a secant/chord (the dashed line) and the arc whose endpoints equal the chord's (the arc shown above the green area). In geometry , a circular segment or disk segment (symbol: ⌓ ) is a region of a disk [ 1 ] which is "cut off" from the rest of the disk by a straight line.
The chord function is defined geometrically as shown in the picture. The chord of an angle is the length of the chord between two points on a unit circle separated by that central angle. The angle θ is taken in the positive sense and must lie in the interval 0 < θ ≤ π (radian measure).
The integral I n is divided up into integrals each on some arc of the circle that is adjacent to ζ, of length a function of s (again, at our discretion). The arcs make up the whole circle; the sum of the integrals over the major arcs is to make up 2 πiF ( n ) (realistically, this will happen up to a manageable remainder term).
For antiderivatives involving both exponential and trigonometric functions, see List of integrals of exponential functions. For a complete list of antiderivative functions, see Lists of integrals. For the special antiderivatives involving trigonometric functions, see Trigonometric integral. [1]
In mathematics, the Legendre forms of elliptic integrals are a canonical set of three elliptic integrals to which all others may be reduced. Legendre chose the name elliptic integrals because [1] the second kind gives the arc length of an ellipse of unit semi-major axis and eccentricity (the ellipse being defined parametrically by = (), = ()).
In mathematics, the Crofton formula, named after Morgan Crofton (1826–1915), (also Cauchy-Crofton formula) is a classic result of integral geometry relating the length of a curve to the expected number of times a "random" line intersects it.