Search results
Results From The WOW.Com Content Network
C++ template library for linear algebra; includes various decompositions and factorisations; syntax is similar to MATLAB. ATLAS: R. Clint Whaley et al. C 2001 3.10.3 / 07.2016 Free BSD Automatically tuned implementation of BLAS. Also includes LU and Cholesky decompositions. Blaze [4] K. Iglberger et al. C++ 2012 3.8 / 08.2020 Free BSD
The terms "mesh generation," "grid generation," "meshing," " and "gridding," are often used interchangeably, although strictly speaking the latter two are broader and encompass mesh improvement: changing the mesh with the goal of increasing the speed or accuracy of the numerical calculations that will be performed over it.
NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3] The predecessor of NumPy, Numeric, was originally created by Jim Hugunin with ...
More generally, there are d! possible orders for a given array, one for each permutation of dimensions (with row-major and column-order just 2 special cases), although the lists of stride values are not necessarily permutations of each other, e.g., in the 2-by-3 example above, the strides are (3,1) for row-major and (1,2) for column-major.
In the Python library NumPy, the outer product can be computed with function np.outer(). [8] In contrast, np.kron results in a flat array. The outer product of multidimensional arrays can be computed using np.multiply.outer .
Memory hierarchy was also recognized as something to exploit. Many computers have cache memory that is much faster than main memory; keeping matrix manipulations localized allows better usage of the cache. In 1987 and 1988, the level 3 BLAS were identified to do matrix-matrix operations. The level 3 BLAS encouraged block-partitioned algorithms.
Data locality is a typical memory reference feature of regular programs (though many irregular memory access patterns exist). It makes the hierarchical memory layout profitable. In computers, memory is divided into a hierarchy in order to speed up data accesses. The lower levels of the memory hierarchy tend to be slower, but larger.
For example, a C++ compiler inserts vtables, type info objects and many temporary and anonymous objects that are active during a program's execution. In a Java program, the memory footprint is predominantly made up of the runtime environment in the form of Java virtual machine (JVM) itself that is loaded indirectly when a Java application launches.