Ad
related to: linear span example math test answers crosswordstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
In mathematics, the linear span (also called the linear hull [1] or just span) of a set of elements of a vector space is the smallest linear subspace of that contains . It is the set of all finite linear combinations of the elements of S , [ 2 ] and the intersection of all linear subspaces that contain S . {\displaystyle S.}
In linear algebra, the column space (also called the range or image) of a matrix A is the span (set of all possible linear combinations) of its column vectors. The column space of a matrix is the image or range of the corresponding matrix transformation .
In linear algebra, the closure of a non-empty subset of a vector space (under vector-space operations, that is, addition and scalar multiplication) is the linear span of this subset. It is a vector space by the preceding general result, and it can be proved easily that is the set of linear combinations of elements of the subset.
SL – special linear group. SO – special orthogonal group. SOC – second order condition. Soln – solution. Sp – symplectic group. Sp – trace of a matrix, from the German "spur" used for the trace. sp, span – linear span of a set of vectors. (Also written with angle brackets.) Spec – spectrum of a ring. Spin – spin group.
Span (unit), the width of a human hand; Span (engineering), a section between two intermediate supports; Wingspan, the distance between the wingtips of a bird or aircraft; Sorbitan esters, also known as a spans; Nebbiolo, an Italian wine grape also known as Span
The seven selected problems span a number of mathematical fields, namely algebraic geometry, arithmetic geometry, geometric topology, mathematical physics, number theory, partial differential equations, and theoretical computer science. Unlike Hilbert's problems, the problems selected by the Clay Institute were already renowned among ...
Moreover, since distributions are just continuous linear functionals on (), the fine nature of the canonical LF topology means that more linear functionals on () end up being continuous ("more" means as compared to a coarser topology that we could have placed on () such as for instance, the subspace topology induced by some (), which although ...
The Steinitz exchange lemma is a basic theorem in linear algebra used, for example, to show that any two bases for a finite-dimensional vector space have the same number of elements. The result is named after the German mathematician Ernst Steinitz .