Search results
Results From The WOW.Com Content Network
The standard defines five basic formats that are named for their numeric base and the number of bits used in their interchange encoding. There are three binary floating-point basic formats (encoded with 32, 64 or 128 bits) and two decimal floating-point basic formats (encoded with 64 or 128 bits).
A floating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit width at the cost of precision. A signed 32-bit integer variable has a maximum value of 2 31 − 1 = 2,147,483,647, whereas an IEEE 754 32-bit base-2 floating-point variable has a maximum value of (2 − 2 −23) × 2 127 ≈ 3.4028235 ...
[citation needed] Before the widespread adoption of IEEE 754-1985, the representation and properties of floating-point data types depended on the computer manufacturer and computer model, and upon decisions made by programming-language implementers. E.g., GW-BASIC's double-precision data type was the 64-bit MBF floating-point format.
Hexadecimal floating point (now called HFP by IBM) is a format for encoding floating-point numbers first introduced on the IBM System/360 computers, and supported on subsequent machines based on that architecture, [1] [2] [3] as well as machines which were intended to be application-compatible with System/360. [4] [5]
Only a few of the earliest VAX processors implemented H Floating-point instructions in hardware, all the others emulated H Floating-point in software. The NEC Vector Engine architecture supports adding, subtracting, multiplying and comparing 128-bit binary IEEE 754 quadruple-precision numbers. [40] Two neighboring 64-bit registers are used.
Swift introduced half-precision floating point numbers in Swift 5.3 with the Float16 type. [20] OpenCL also supports half-precision floating point numbers with the half datatype on IEEE 754-2008 half-precision storage format. [21] As of 2024, Rust is currently working on adding a new f16 type for IEEE half-precision 16-bit floats. [22]
The number 0.15625 represented as a single-precision IEEE 754-1985 floating-point number. See text for explanation. The three fields in a 64bit IEEE 754 float. Floating-point numbers in IEEE 754 format consist of three fields: a sign bit, a biased exponent, and a fraction. The following example illustrates the meaning of each.
VCVTPS2PH xmmrm128,ymmreg,imm8 – convert eight single-precision floating point values in a YMM register to half-precision floating-point values in memory or an XMM register. The 8-bit immediate argument to VCVTPS2PH selects the rounding mode. Values 0–4 select nearest, down, up, truncate, and the mode set in MXCSR.RC.