Search results
Results From The WOW.Com Content Network
Computational geometry is a branch of computer science devoted to the study of algorithms that can be stated in terms of geometry. Some purely geometrical problems arise out of the study of computational geometric algorithms, and such problems are also considered to be part of computational geometry.
What is the fastest algorithm for matrix multiplication? Can all-pairs shortest paths be computed in strongly sub-cubic time, that is, in time O(V 3−ϵ) for some ϵ>0? Can the Schwartz–Zippel lemma for polynomial identity testing be derandomized? Does linear programming admit a strongly polynomial-time algorithm?
Flowchart of using successive subtractions to find the greatest common divisor of number r and s. In mathematics and computer science, an algorithm (/ ˈ æ l ɡ ə r ɪ ð əm / ⓘ) is a finite sequence of mathematically rigorous instructions, typically used to solve a class of specific problems or to perform a computation. [1]
An algorithm is fundamentally a set of rules or defined procedures that is typically designed and used to solve a specific problem or a broad set of problems.. Broadly, algorithms define process(es), sets of rules, or methodologies that are to be followed in calculations, data processing, data mining, pattern recognition, automated reasoning or other problem-solving operations.
The general class of questions that some algorithm can answer in polynomial time is "P" or "class P". For some questions, there is no known way to find an answer quickly, but if provided with an answer, it can be verified quickly. The class of questions where an answer can be verified in polynomial time is "NP", standing for "nondeterministic ...
In computer science, algorithmic efficiency is a property of an algorithm which relates to the amount of computational resources used by the algorithm. Algorithmic efficiency can be thought of as analogous to engineering productivity for a repeating or continuous process.
Natural computing, [1] [2] also called natural computation, is a terminology introduced to encompass three classes of methods: 1) those that take inspiration from nature for the development of novel problem-solving techniques; 2) those that are based on the use of computers to synthesize natural phenomena; and 3) those that employ natural materials (e.g., molecules) to compute.
For example, one of the long-standing open questions in computer science is to determine whether there is an algorithm that outperforms the 2-approximation for the Steiner Forest problem by Agrawal et al. [3] The desire to understand hard optimization problems from the perspective of approximability is motivated by the discovery of surprising ...