Search results
Results From The WOW.Com Content Network
The Bailey–Borwein–Plouffe formula (BBP formula) is a formula for π. It was discovered in 1995 by Simon Plouffe and is named after the authors of the article in which it was published, David H. Bailey, Peter Borwein, and Plouffe. [1] Before that, it had been published by Plouffe on his own site. [2] The formula is:
This eigenvalue problem is called the Hermite equation, although the term is also used for the closely related equation ″ ′ =. whose solution is uniquely given in terms of physicist's Hermite polynomials in the form () = (), where denotes a constant, after imposing the boundary condition that u should be polynomially bounded at infinity.
If p ≤ 0, then the nth-term test identifies the series as divergent. If 0 < p ≤ 1, then the nth-term test is inconclusive, but the series is divergent by the integral test for convergence. If 1 < p, then the nth-term test is inconclusive, but the series is convergent by the integral test for convergence.
Furthermore, you only need to do O(n) extra work if an extra point is added to the data set, while for the other methods, you have to redo the whole computation. Another method is preferred when the aim is not to compute the coefficients of p ( x ), but only a single value p ( a ) at a point x = a not in the original data set.
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
For example, renormalization in QED modifies the mass of the free field electron to match that of a physical electron (with an electromagnetic field), and will in doing so add a term to the free field Lagrangian which must be cancelled by a counterterm in the interaction Lagrangian, that then shows up as a two-line vertex in the Feynman diagrams.
The Cauchy formula for repeated integration, named after Augustin-Louis Cauchy, allows one to compress n antiderivatives of a function into a single integral (cf. Cauchy's formula). For non-integer n it yields the definition of fractional integrals and (with n < 0) fractional derivatives .
Faulhaber's formula is also called Bernoulli's formula. Faulhaber did not know the properties of the coefficients later discovered by Bernoulli. Rather, he knew at least the first 17 cases, as well as the existence of the Faulhaber polynomials for odd powers described below. [2] Jakob Bernoulli's Summae Potestatum, Ars Conjectandi, 1713