When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Matrix pencil - Wikipedia

    en.wikipedia.org/wiki/Matrix_pencil

    Matrix pencils play an important role in numerical linear algebra.The problem of finding the eigenvalues of a pencil is called the generalized eigenvalue problem.The most popular algorithm for this task is the QZ algorithm, which is an implicit version of the QR algorithm to solve the eigenvalue problem = without inverting the matrix (which is impossible when is singular, or numerically ...

  3. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  4. Nonlinear eigenproblem - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_eigenproblem

    The Julia package NEP-PACK contains many implementations of various numerical methods for nonlinear eigenvalue problems, as well as many benchmark problems. [12] The review paper of Güttel & Tisseur [1] contains MATLAB code snippets implementing basic Newton-type methods and contour integration methods for nonlinear eigenproblems.

  5. Rayleigh quotient iteration - Wikipedia

    en.wikipedia.org/wiki/Rayleigh_quotient_iteration

    Rayleigh quotient iteration is an eigenvalue algorithm which extends the idea of the inverse iteration by using the Rayleigh quotient to obtain increasingly accurate eigenvalue estimates. Rayleigh quotient iteration is an iterative method, that is, it delivers a sequence of approximate solutions that converges to a true solution in the limit ...

  6. Eigenfunction - Wikipedia

    en.wikipedia.org/wiki/Eigenfunction

    Functions can be written as a linear combination of the basis functions, = = (), for example through a Fourier expansion of f(t). The coefficients b j can be stacked into an n by 1 column vector b = [b 1 b 2 … b n] T. In some special cases, such as the coefficients of the Fourier series of a sinusoidal function, this column vector has finite ...

  7. LOBPCG - Wikipedia

    en.wikipedia.org/wiki/LOBPCG

    A simple work-around is to negate the function, substituting -D T (D X) for D T (D X) and thus reversing the order of the eigenvalues, since LOBPCG does not care if the matrix of the eigenvalue problem is positive definite or not. [9] LOBPCG for PCA and SVD is implemented in SciPy since revision 1.4.0 [13]

  8. Lanczos algorithm - Wikipedia

    en.wikipedia.org/wiki/Lanczos_algorithm

    The Lanczos algorithm is most often brought up in the context of finding the eigenvalues and eigenvectors of a matrix, but whereas an ordinary diagonalization of a matrix would make eigenvectors and eigenvalues apparent from inspection, the same is not true for the tridiagonalization performed by the Lanczos algorithm; nontrivial additional steps are needed to compute even a single eigenvalue ...

  9. QR algorithm - Wikipedia

    en.wikipedia.org/wiki/QR_algorithm

    The eigenvalues of a matrix are always computable. We will now discuss how these difficulties manifest in the basic QR algorithm. This is illustrated in Figure 2. Recall that the ellipses represent positive-definite symmetric matrices. As the two eigenvalues of the input matrix approach each other, the input ellipse changes into a circle.