When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Mixture distribution - Wikipedia

    en.wikipedia.org/wiki/Mixture_distribution

    In probability and statistics, a mixture distribution is the probability distribution of a random variable that is derived from a collection of other random variables as follows: first, a random variable is selected by chance from the collection according to given probabilities of selection, and then the value of the selected random variable is realized.

  3. Compound probability distribution - Wikipedia

    en.wikipedia.org/wiki/Compound_probability...

    In probability and statistics, a compound probability distribution (also known as a mixture distribution or contagious distribution) is the probability distribution that results from assuming that a random variable is distributed according to some parametrized distribution, with (some of) the parameters of that distribution themselves being random variables.

  4. Expected value - Wikipedia

    en.wikipedia.org/wiki/Expected_value

    The mass of probability distribution is balanced at the expected value, here a Beta(α,β) distribution with expected value α/(α+β). In classical mechanics, the center of mass is an analogous concept to expectation. For example, suppose X is a discrete random variable with values x i and corresponding probabilities p i.

  5. Mixture model - Wikipedia

    en.wikipedia.org/wiki/Mixture_model

    A typical finite-dimensional mixture model is a hierarchical model consisting of the following components: . N random variables that are observed, each distributed according to a mixture of K components, with the components belonging to the same parametric family of distributions (e.g., all normal, all Zipfian, etc.) but with different parameters

  6. EM algorithm and GMM model - Wikipedia

    en.wikipedia.org/wiki/EM_Algorithm_And_GMM_Model

    The EM algorithm consists of two steps: the E-step and the M-step. Firstly, the model parameters and the () can be randomly initialized. In the E-step, the algorithm tries to guess the value of () based on the parameters, while in the M-step, the algorithm updates the value of the model parameters based on the guess of () of the E-step.

  7. Characteristic function (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Characteristic_function...

    There is a one-to-one correspondence between cumulative distribution functions and characteristic functions, so it is possible to find one of these functions if we know the other. The formula in the definition of characteristic function allows us to compute φ when we know the distribution function F (or density f).

  8. Mixture (probability) - Wikipedia

    en.wikipedia.org/wiki/Mixture_(probability)

    In probability theory and statistics, a mixture is a probabilistic combination of two or more probability distributions. [1] The concept arises mostly in two contexts: A mixture defining a new probability distribution from some existing ones, as in a mixture distribution or a compound distribution. Here a major problem often is to derive the ...

  9. Location testing for Gaussian scale mixture distributions

    en.wikipedia.org/wiki/Location_testing_for...

    This means that if we test the null hypothesis that the center of a Gaussian scale mixture distribution is 0, say, then t n G (x) (x ≥ 0) is the infimum of all monotone nondecreasing functions u(x) ≥ 1/2, x ≥ 0 such that if the critical values of the test are u −1 (1 − α), then the significance level is at most α ≥ 1/2 for all ...

  1. Related searches expectation of mixture distribution chart calculator with steps pdf print

    what is mixture distributionmixture model wikipedia
    mixture model statisticswhat is a mixture model
    mixture distribution wikipedia