When.com Web Search

  1. Ads

    related to: quadratic spline interpolation formula excel

Search results

  1. Results From The WOW.Com Content Network
  2. Spline interpolation - Wikipedia

    en.wikipedia.org/wiki/Spline_interpolation

    In the mathematical field of numerical analysis, spline interpolation is a form of interpolation where the interpolant is a special type of piecewise polynomial called a spline. That is, instead of fitting a single, high-degree polynomial to all of the values at once, spline interpolation fits low-degree polynomials to small subsets of the ...

  3. Multivariate interpolation - Wikipedia

    en.wikipedia.org/wiki/Multivariate_interpolation

    Polyharmonic spline (the thin-plate-spline is a special case of a polyharmonic spline) Radial basis function (Polyharmonic splines are a special case of radial basis functions with low degree polynomial terms) Least-squares spline; Natural neighbour interpolation; Gridding is the process of converting irregularly spaced data to a regular grid ...

  4. Spline (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Spline_(mathematics)

    The simplest spline has degree 0. It is also called a step function. The next most simple spline has degree 1. It is also called a linear spline. A closed linear spline (i.e, the first knot and the last are the same) in the plane is just a polygon. A common spline is the natural cubic spline.

  5. Interpolation - Wikipedia

    en.wikipedia.org/wiki/Interpolation

    Linear interpolation uses a linear function for each of intervals [x k,x k+1]. Spline interpolation uses low-degree polynomials in each of the intervals, and chooses the polynomial pieces such that they fit smoothly together. The resulting function is called a spline.

  6. Bézier curve - Wikipedia

    en.wikipedia.org/wiki/Bézier_curve

    A Bézier curve is defined by a set of control points P 0 through P n, where n is called the order of the curve (n = 1 for linear, 2 for quadratic, 3 for cubic, etc.). The first and last control points are always the endpoints of the curve; however, the intermediate control points generally do not lie on the curve.

  7. Lagrange polynomial - Wikipedia

    en.wikipedia.org/wiki/Lagrange_polynomial

    Lagrange and other interpolation at equally spaced points, as in the example above, yield a polynomial oscillating above and below the true function. This behaviour tends to grow with the number of points, leading to a divergence known as Runge's phenomenon ; the problem may be eliminated by choosing interpolation points at Chebyshev nodes .

  8. Polynomial interpolation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_interpolation

    The original use of interpolation polynomials was to approximate values of important transcendental functions such as natural logarithm and trigonometric functions.Starting with a few accurately computed data points, the corresponding interpolation polynomial will approximate the function at an arbitrary nearby point.

  9. Monotone cubic interpolation - Wikipedia

    en.wikipedia.org/wiki/Monotone_cubic_interpolation

    Example showing non-monotone cubic interpolation (in red) and monotone cubic interpolation (in blue) of a monotone data set. Monotone interpolation can be accomplished using cubic Hermite spline with the tangents m i {\displaystyle m_{i}} modified to ensure the monotonicity of the resulting Hermite spline.