Search results
Results From The WOW.Com Content Network
Left and right methods make the approximation using the right and left endpoints of each subinterval, respectively. Upper and lower methods make the approximation using the largest and smallest endpoint values of each subinterval, respectively. The values of the sums converge as the subintervals halve from top-left to bottom-right.
n = 1 that yield a minimax approximation or bound for the closely related Q-function: Q(x) ≈ Q̃(x), Q(x) ≤ Q̃(x), or Q(x) ≥ Q̃(x) for x ≥ 0. The coefficients {(a n,b n)} N n = 1 for many variations of the exponential approximations and bounds up to N = 25 have been released to open access as a comprehensive dataset. [16]
The trapezoidal rule may be viewed as the result obtained by averaging the left and right Riemann sums, and is sometimes defined this way. The integral can be even better approximated by partitioning the integration interval , applying the trapezoidal rule to each subinterval, and summing the results.
The main idea of the Bentley–Ottmann algorithm is to use a sweep line approach, in which a vertical line L moves from left to right (or, e.g., from top to bottom) across the plane, intersecting the input line segments in sequence as it moves. [2] The algorithm is described most easily in its general position, meaning:
It is said left-open or right-open depending on whether the excluded endpoint is on the left or on the right. These intervals are denoted by mixing notations for open and closed intervals. [ 3 ] For example, (0, 1] means greater than 0 and less than or equal to 1 , while [0, 1) means greater than or equal to 0 and less than 1 .
The left end, −1, is never replaced (it does not change at first and after the first three iterations, f " is negative on the interval) and thus the width of the bracket never falls below 1. Hence, the right endpoint approaches 0 at a linear rate (the number of accurate digits grows linearly, with a rate of convergence of 2/3). [citation needed]
As grows, the approximation of this function by a Gaussian function (shown in red) improves. This observation underlies Laplace's method. Let the function () have a unique global maximum at . > is a constant here. The following two functions are considered:
An approximation in the form of an asymptotic series is obtained in the transition layer(s) by treating that part of the domain as a separate perturbation problem. This approximation is called the inner solution, and the other is the outer solution, named for their relationship to the transition layer(s). The outer and inner solutions are then ...