Ads
related to: mr j equivalent fractions
Search results
Results From The WOW.Com Content Network
As with fractions of the form , it has been conjectured that every fraction (for >) can be expressed as a sum of three positive unit fractions. A generalized version of the conjecture states that, for any positive k {\displaystyle k} , all but finitely many fractions k n {\displaystyle {\tfrac {k}{n}}} can be expressed as a sum of three ...
Kraaikamp & Wu (2004) observe that an Engel expansion can also be written as an ascending variant of a continued fraction: = + + +. They claim that ascending continued fractions such as this have been studied as early as Fibonacci's Liber Abaci (1202). This claim appears to refer to Fibonacci's compound fraction notation in which a sequence of ...
This last non-simple continued fraction (sequence A110185 in the OEIS), equivalent to = [;,,,,,...], has a quicker convergence rate compared to Euler's continued fraction formula [clarification needed] and is a special case of a general formula for the exponential function:
The process for subtracting fractions is, in essence, the same as that of adding them: find a common denominator, and change each fraction to an equivalent fraction with the chosen common denominator. The resulting fraction will have that denominator, and its numerator will be the result of subtracting the numerators of the original fractions.
The following list includes the continued fractions of some constants and is sorted by their representations. Continued fractions with more than 20 known terms have been truncated, with an ellipsis to show that they continue. Rational numbers have two continued fractions; the version in this list is the shorter one.
A fractional program in which f is nonnegative and concave, g is positive and convex, and S is a convex set is called a concave fractional program.If g is affine, f does not have to be restricted in sign.
with the coefficients of the q-expansion being OEIS: A003114 and OEIS: A003106, respectively, where (;) denotes the infinite q-Pochhammer symbol, j is the j-function, and 2 F 1 is the hypergeometric function. The Rogers–Ramanujan continued fraction is then
The equivalence may be read on the regular continued fraction representation, as shown by the following theorem of Serret: Theorem: Two irrational numbers x and y are equivalent if and only if there exist two positive integers h and k such that the regular continued fraction representations of x and y