When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    In power iteration, for example, the eigenvector is actually computed before the eigenvalue (which is typically computed by the Rayleigh quotient of the eigenvector). [11] In the QR algorithm for a Hermitian matrix (or any normal matrix), the orthonormal eigenvectors are obtained as a product of the Q matrices from the steps in the algorithm. [11]

  3. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  4. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    For a matrix, eigenvalues and eigenvectors can be used to decompose the matrix—for example by diagonalizing it. Eigenvalues and eigenvectors give rise to many closely related mathematical concepts, and the prefix eigen-is applied liberally when naming them:

  5. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    Intuitively, we glob together the Jordan block invariant subspaces corresponding to the same eigenvalue. In the extreme case where A is a multiple of the identity matrix we have k = n and l = 1. The projection onto Y i and along all the other Y j ( j ≠ i) is called the spectral projection of A at v i and is usually denoted by P(λ i ; A).

  6. Commuting matrices - Wikipedia

    en.wikipedia.org/wiki/Commuting_matrices

    As an example, the identity matrix commutes with all matrices, which between them do not all commute. If the set of matrices considered is restricted to Hermitian matrices without multiple eigenvalues, then commutativity is transitive, as a consequence of the characterization in terms of eigenvectors.

  7. Eigenvalue perturbation - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_perturbation

    This example is less nasty that the previous one. Suppose [] is the 2x2 identity matrix, any vector is an eigenvector; then = [,] / is one possible eigenvector. But if one makes a small perturbation, such as

  8. Jacobi eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm

    For example, the fourth-order Hilbert matrix has a condition of 15514, while for order 8 it is 2.7 × 10 8. Rank A matrix A {\displaystyle A} has rank r {\displaystyle r} if it has r {\displaystyle r} columns that are linearly independent while the remaining columns are linearly dependent on these.

  9. Idempotent matrix - Wikipedia

    en.wikipedia.org/wiki/Idempotent_matrix

    An idempotent matrix is always diagonalizable. [3] Its eigenvalues are either 0 or 1: if is a non-zero eigenvector of some idempotent matrix and its associated eigenvalue, then = = = = =, which implies {,}.