Search results
Results From The WOW.Com Content Network
Calculus was a term used for various kinds of stones. This spun off many modern words, including calculate (' use stones for mathematical purposes '), and calculus, which came to be used, in the 18th century, for accidental or incidental mineral buildups in human and animal bodies, like kidney stones and minerals on teeth. [3]
In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let () = (), where both f and g are differentiable and ()
The calculus of variations began with the work of Isaac Newton, such as with Newton's minimal resistance problem, which he formulated and solved in 1685, and published in his Principia in 1687, [2] which was the first problem in the field to be clearly formulated and correctly solved, and was one of the most difficult problems tackled by variational methods prior to the twentieth century.
Calculus is also used to find approximate solutions to equations; in practice, it is the standard way to solve differential equations and do root finding in most applications. Examples are methods such as Newton's method , fixed point iteration , and linear approximation .
The calculus of variations deals with functionals : ¯, where is some function space and ¯ = {}. The main interest of the subject is to find minimizers for such functionals, that is, functions v ∈ V {\displaystyle v\in V} such that J ( v ) ≤ J ( u ) {\displaystyle J(v)\leq J(u)} for all u ∈ V {\displaystyle u\in V} .
The backward Euler method is an implicit method, meaning that the formula for the backward Euler method has + on both sides, so when applying the backward Euler method we have to solve an equation. This makes the implementation more costly.
In calculus, the product rule (or Leibniz rule [1] or Leibniz product rule) is a formula used to find the derivatives of products of two or more functions.For two functions, it may be stated in Lagrange's notation as () ′ = ′ + ′ or in Leibniz's notation as () = +.
Adequality is a technique developed by Pierre de Fermat in his treatise Methodus ad disquirendam maximam et minimam [1] (a Latin treatise circulated in France c. 1636 ) to calculate maxima and minima of functions, tangents to curves, area, center of mass, least action, and other problems in calculus.