Search results
Results From The WOW.Com Content Network
Recall that decimation of sampled data in one domain (time or frequency) produces overlap (sometimes known as aliasing) in the other, and vice versa. Compared to an L {\displaystyle L} -length DFT, the s N {\displaystyle s_{_{N}}} summation/overlap causes decimation in frequency, [ 1 ] : p.558 leaving only DTFT samples least affected by ...
Right: The DFT (bottom) computes discrete samples of the continuous DTFT. The inverse DFT (top) is a periodic summation of the original samples. The FFT algorithm computes one cycle of the DFT and its inverse is one cycle of the DFT inverse. Fig 2: Depiction of a Fourier transform (upper left) and its periodic summation (DTFT) in the lower left ...
That there is no one preferred way (often, one says "no canonical way") to compare the two versions of the real line which are involved in the Fourier transform—fixing the units on one line does not force the scale of the units on the other line—is the reason for the plethora of rival conventions on the definition of the Fourier transform.
This is sometimes referred to as the sifting property [38] or the sampling property. [39] The delta function is said to "sift out" the value of f(t) at t = T. [40] It follows that the effect of convolving a function f(t) with the time-delayed Dirac delta is to time-delay f(t) by the same amount: [41]
The conversion from continuous time to samples (discrete-time) changes the underlying Fourier transform of x(t) into a discrete-time Fourier transform (DTFT), which generally entails a type of distortion called aliasing. Choice of an appropriate sample-rate (see Nyquist rate) is the key to minimizing that distortion.
In particular, the DTFT of the product of two discrete sequences is the periodic convolution of the DTFTs of the individual sequences. And each DTFT is a periodic summation of a continuous Fourier transform function (see Discrete-time Fourier transform § Relation to Fourier Transform). Although DTFTs are usually continuous functions of ...
A one-dimensional reversible cellular automaton with nine states. At each step, each cell copies the shape from its left neighbor, and the color from its right neighbor. A reversible cellular automaton is a cellular automaton in which every configuration has a unique predecessor. That is, it is a regular grid of cells, each containing a state ...
In signal processing, linear phase is a property of a filter where the phase response of the filter is a linear function of frequency.The result is that all frequency components of the input signal are shifted in time (usually delayed) by the same constant amount (the slope of the linear function), which is referred to as the group delay.