Ad
related to: electric flux examples and solutions for class 11 biology ncert book pdf download
Search results
Results From The WOW.Com Content Network
If the electric field is uniform, the electric flux passing through a surface of vector area A is = = , where E is the electric field (having the unit V/m), E is its magnitude, A is the area of the surface, and θ is the angle between the electric field lines and the normal (perpendicular) to A.
In quantum mechanics, the probability current (sometimes called probability flux) is a mathematical quantity describing the flow of probability. Specifically, if one thinks of probability as a heterogeneous fluid, then the probability current is the rate of flow of this fluid.
Gauss's law makes it possible to find the distribution of electric charge: The charge in any given region of the conductor can be deduced by integrating the electric field to find the flux through a small box whose sides are perpendicular to the conductor's surface and by noting that the electric field is perpendicular to the surface, and zero ...
The flux control coefficient, instead, measures how much influence a given step has on the steady-state flux. A step with a high flux control coefficient means that changing the activity of the step (by changing the expression level of the enzyme) will have a large effect on the steady-state flux through the pathway and vice versa.
Electroosmotic flow is caused by the Coulomb force induced by an electric field on net mobile electric charge in a solution. Because the chemical equilibrium between a solid surface and an electrolyte solution typically leads to the interface acquiring a net fixed electrical charge, a layer of mobile ions, known as an electrical double layer or Debye layer, forms in the region near the interface.
Hence, units of electric flux are, in the MKS system, newtons per coulomb times meters squared, or N m 2 /C. (Electric flux density is the electric flux per unit area, and is a measure of strength of the normal component of the electric field averaged over the area of integration. Its units are N/C, the same as the electric field in MKS units.)
Developmental bioelectricity is a sub-discipline of biology, related to, but distinct from, neurophysiology and bioelectromagnetics.Developmental bioelectricity refers to the endogenous ion fluxes, transmembrane and transepithelial voltage gradients, and electric currents and fields produced and sustained in living cells and tissues.
Although flux control is shared, this doesn't imply that control is evenly distributed. For a large network, the average flux control will, according to the flux summation theorem, be equal to /, that is a small number. In order for a biological cell to have any appreciable control over a pathway via changes in gene expression, some ...