Search results
Results From The WOW.Com Content Network
The theoretically optimal page replacement algorithm (also known as OPT, clairvoyant replacement algorithm, or Bélády's optimal page replacement policy) [3] [4] [2] is an algorithm that works as follows: when a page needs to be swapped in, the operating system swaps out the page whose next use will occur farthest in the future. For example, a ...
Bélády's algorithm is the optimal cache replacement policy, but it requires knowledge of the future to evict lines that will be reused farthest in the future. A number of replacement policies have been proposed which attempt to predict future reuse distances from past access patterns, [23] allowing them to approximate the optimal replacement ...
This phenomenon is commonly experienced when using the first-in first-out page replacement algorithm. In FIFO, the page fault may or may not increase as the page frames increase, but in optimal and stack-based algorithms like LRU, as the page frames increase, the page fault decreases. László Bélády demonstrated this in 1969. [1]
Windows can be configured to use free space on any available drives for page files. It is required, however, for the boot partition (i.e., the drive containing the Windows directory) to have a page file on it if the system is configured to write either kernel or full memory dumps after a Blue Screen of Death. Windows uses the paging file as ...
Pseudo-LRU or PLRU is a family of cache algorithms which improve on the performance of the Least Recently Used (LRU) algorithm by replacing values using approximate measures of age rather than maintaining the exact age of every value in the cache. PLRU usually refers to two cache replacement algorithms: tree-PLRU and bit-PLRU.
LIRS (Low Inter-reference Recency Set) is a page replacement algorithm with an improved performance over LRU (Least Recently Used) and many other newer replacement algorithms. [1] This is achieved by using "reuse distance" [ 2 ] as the locality metric for dynamically ranking accessed pages to make a replacement decision.
Thrashing occurs when there are too many pages in memory, and each page refers to another page. Real memory reduces its capacity to contain all the pages, so it uses 'virtual memory'. When each page in execution demands that page that is not currently in real memory (RAM) it places some pages on virtual memory and adjusts the required page on RAM.
In computing, a page fault is an exception that the memory management unit (MMU) raises when a process accesses a memory page without proper preparations. Accessing the page requires a mapping to be added to the process's virtual address space. Furthermore, the actual page contents may need to be loaded from a back-up, e.g. a disk.