When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Poisson–Boltzmann equation - Wikipedia

    en.wikipedia.org/wiki/Poisson–Boltzmann_equation

    The Poisson–Boltzmann equation can be applied to biomolecular systems. One example is the binding of electrolytes to biomolecules in a solution. This process is dependent upon the electrostatic field generated by the molecule, the electrostatic potential on the surface of the molecule, as well as the electrostatic free energy. [13]

  3. Electric potential - Wikipedia

    en.wikipedia.org/wiki/Electric_potential

    In short, an electric potential is the electric potential energy per unit charge. This value can be calculated in either a static (time-invariant) or a dynamic (time-varying) electric field at a specific time with the unit joules per coulomb (J⋅C −1) or volt (V). The electric potential at infinity is assumed to be zero.

  4. Electric potential energy - Wikipedia

    en.wikipedia.org/wiki/Electric_potential_energy

    The electrostatic potential energy U E stored in a system of two charges is equal to the electrostatic potential energy of a charge in the electrostatic potential generated by the other. That is to say, if charge q 1 generates an electrostatic potential V 1 , which is a function of position r , then U E = q 2 V 1 ( r 2 ) . {\displaystyle U ...

  5. Born–Landé equation - Wikipedia

    en.wikipedia.org/wiki/Born–Landé_equation

    The electrostatic potential energy, E pair, between a pair of ions of equal and opposite charge is: = where z = magnitude of charge on one ion e = elementary charge, 1.6022 × 10 −19 C ε 0 = permittivity of free space 4 π ε 0 = 1.112 × 10 −10 C 2 /(J·m)

  6. Poisson's equation - Wikipedia

    en.wikipedia.org/wiki/Poisson's_equation

    Siméon Denis Poisson. Poisson's equation is an elliptic partial differential equation of broad utility in theoretical physics.For example, the solution to Poisson's equation is the potential field caused by a given electric charge or mass density distribution; with the potential field known, one can then calculate the corresponding electrostatic or gravitational (force) field.

  7. Madelung constant - Wikipedia

    en.wikipedia.org/wiki/Madelung_constant

    The electrostatic energy of the ion at site r i then is the product of its charge with the potential acting at its site , = =. There occur as many Madelung constants M i in a crystal structure as ions occupy different lattice sites.

  8. Debye–Hückel theory - Wikipedia

    en.wikipedia.org/wiki/Debye–Hückel_theory

    To bring an ion of species i, initially far away, to a point within the ion cloud requires interaction energy in the amount of , where is the elementary charge, and is the value of the scalar electric potential field at . If electric forces were the only factor in play, the minimal-energy configuration of all the ions would be achieved in a ...

  9. Ionic potential - Wikipedia

    en.wikipedia.org/wiki/Ionic_potential

    Ionic potential is the ratio of the electrical charge (z) to the radius (r) of an ion. [1]= = As such, this ratio is a measure of the charge density at the surface of the ion; usually the denser the charge, the stronger the bond formed by the ion with ions of opposite charge.