Search results
Results From The WOW.Com Content Network
RNA polymerase binding in bacteria involves the sigma factor recognizing the core promoter region containing the −35 and −10 elements (located before the beginning of sequence to be transcribed) and also, at some promoters, the α subunit C-terminal domain recognizing promoter upstream elements. [12]
[2] [3] Thus, activator proteins help to promote the binding of the RNA polymerase to the promoter. [2] [3] This is done through various mechanisms. Activators may bend the DNA in order to better expose the promoter so the RNA polymerase can bind more effectively. [3] Activators may make direct contact with the RNA polymerase and secure it to ...
The Pribnow box has a function similar to the TATA box that occurs in promoters in eukaryotes and archaea: it is recognized and bound by a subunit of RNA polymerase during initiation of transcription. [3] This region of the DNA is also the first place where base pairs separate during prokaryotic transcription to allow access to the template strand.
A primer binding site is a region of a nucleotide sequence where an RNA or DNA single-stranded primer binds to start replication. The primer binding site is on one of the two complementary strands of a double-stranded nucleotide polymer , in the strand which is to be copied, or is within a single-stranded nucleotide polymer sequence.
The initiation of the transcription is a multistep sequential process that involves several mechanisms: promoter location, initial reversible binding of RNA polymerase, conformational changes in RNA polymerase, conformational changes in DNA, binding of nucleoside triphosphate (NTP) to the functional RNA polymerase-promoter complex, and ...
These two components, RNA polymerase and sigma factor, when paired together, build RNA polymerase holoenzyme which is then in its active form and ready to bind to a promoter and initiate DNA transcription. [8] Once it binds to the DNA, RNA polymerase turns from a closed to an open complex, forming the transcription bubble.
A Rho factor acts on an RNA substrate. Rho's key function is its helicase activity, for which energy is provided by an RNA-dependent ATP hydrolysis. The initial binding site for Rho is an extended (~70 nucleotides, sometimes 80–100 nucleotides) single-stranded region, rich in cytosine and poor in guanine, called the rho utilisation site (rut), in the RNA being synthesised, upstream of the ...
When maltose is present in E. coli, it binds to the maltose activator protein (#1), which promotes maltose activator protein binding to the activator binding site (#2). This allows the RNA polymerase to bind to the mal promoter (#3). Transcription of malE, malF, and malG genes then proceeds (#4) as maltose activator protein and RNA polymerase ...