Search results
Results From The WOW.Com Content Network
Lossless compression of digitized data such as video, digitized film, and audio preserves all the information, but it does not generally achieve compression ratio much better than 2:1 because of the intrinsic entropy of the data. Compression algorithms which provide higher ratios either incur very large overheads or work only for specific data ...
The Weissman score is a performance metric for lossless compression applications. It was developed by Tsachy Weissman, a professor at Stanford University, and Vinith Misra, a graduate student, at the request of producers for HBO's television series Silicon Valley, a television show about a fictional tech start-up working on a data compression algorithm.
Lossless audio compression produces a representation of digital data that can be decoded to an exact digital duplicate of the original. Compression ratios are around 50–60% of the original size, [49] which is similar to those for generic lossless data compression.
The LZ4 algorithm aims to provide a good trade-off between speed and compression ratio. Typically, it has a smaller (i.e., worse) compression ratio than the similar LZO algorithm, which in turn is worse than algorithms like DEFLATE. However, LZ4 compression speed is similar to LZO and several times faster than DEFLATE, while decompression speed ...
Lossless compression is a class of data compression that allows the original data to be perfectly reconstructed from the compressed data with no loss of information. Lossless compression is possible because most real-world data exhibits statistical redundancy . [ 1 ]
The quantity is called the relative redundancy and gives the maximum possible data compression ratio, when expressed as the percentage by which a file size can be decreased. (When expressed as a ratio of original file size to compressed file size, the quantity R : r {\displaystyle R:r} gives the maximum compression ratio that can be achieved.)
To spot matches, the encoder must keep track of some amount of the most recent data, such as the last 2 KB, 4 KB, or 32 KB. The structure in which this data is held is called a sliding window, which is why LZ77 is sometimes called sliding-window compression. The encoder needs to keep this data to look for matches, and the decoder needs to keep ...
Golomb coding is a lossless data compression method using a family of data compression codes invented by Solomon W. Golomb in the 1960s. Alphabets following a geometric distribution will have a Golomb code as an optimal prefix code, [1] making Golomb coding highly suitable for situations in which the occurrence of small values in the input stream is significantly more likely than large values.