Search results
Results From The WOW.Com Content Network
The RSA problem is defined as the task of taking e th roots modulo a composite n: recovering a value m such that c ≡ m e (mod n), where (n, e) is an RSA public key, and c is an RSA ciphertext. Currently the most promising approach to solving the RSA problem is to factor the modulus n.
PKCS Standards Summary; Version Name Comments PKCS #1: 2.2: RSA Cryptography Standard [1]: See RFC 8017. Defines the mathematical properties and format of RSA public and private keys (ASN.1-encoded in clear-text), and the basic algorithms and encoding/padding schemes for performing RSA encryption, decryption, and producing and verifying signatures.
RSA uses exponentiation modulo a product of two very large primes, to encrypt and decrypt, performing both public key encryption and public key digital signatures. Its security is connected to the extreme difficulty of factoring large integers , a problem for which there is no known efficient general technique.
It provides the basic definitions of and recommendations for implementing the RSA algorithm for public-key cryptography. It defines the mathematical properties of public and private keys, primitive operations for encryption and signatures, secure cryptographic schemes, and related ASN.1 syntax representations. The current version is 2.2 (2012 ...
PKCS #8 is one of the family of standards called Public-Key Cryptography Standards (PKCS) created by RSA Laboratories. The latest version, 1.2, is available as RFC 5208. [1] The PKCS #8 private key may be encrypted with a passphrase using one of the PKCS #5 standards defined in RFC 2898, [2] which supports multiple encryption schemes.
For large RSA key sizes (in excess of 1024 bits), no efficient method for solving this problem is known; if an efficient method is ever developed, it would threaten the current or eventual security of RSA-based cryptosystems—both for public-key encryption and digital signatures.
The public key in the RSA system is a tuple of integers (,), where N is the product of two primes p and q.The secret key is given by an integer d satisfying (() ()); equivalently, the secret key may be given by () and () if the Chinese remainder theorem is used to improve the speed of decryption, see CRT-RSA.
The public key is made available to anyone (often by means of a digital certificate). A sender encrypts data with the receiver's public key; only the holder of the private key can decrypt this data. Since public-key algorithms tend to be much slower than symmetric-key algorithms, modern systems such as TLS and SSH use a combination of the two ...