Ad
related to: magnetic field of two magnets notesgenerationgenius.com has been visited by 10K+ users in the past month
Search results
Results From The WOW.Com Content Network
If the magnet is aligned with the magnetic field, corresponding to two magnets oriented in the same direction near the poles, then it will be drawn into the larger magnetic field. If it is oppositely aligned, such as the case of two magnets with like poles facing each other, then the magnet will be repelled from the region of higher magnetic field.
The magnetic field of permanent magnets can be quite complicated, especially near the magnet. The magnetic field of a small [note 6] straight magnet is proportional to the magnet's strength (called its magnetic dipole moment m). The equations are non-trivial and depend on the distance from the magnet and the orientation of the magnet.
Magnetism is the class of physical attributes that occur through a magnetic field, which allows objects to attract or repel each other.Because both electric currents and magnetic moments of elementary particles give rise to a magnetic field, magnetism is one of two aspects of electromagnetism.
A magnet is a material or object that produces a magnetic field.This magnetic field is invisible but is responsible for the most notable property of a magnet: a force that pulls on other ferromagnetic materials, such as iron, steel, nickel, cobalt, etc. and attracts or repels other magnets.
Heating a magnet, subjecting it to vibration by hammering it, or applying a rapidly oscillating magnetic field from a degaussing coil, tends to pull the domain walls free from their pinned states, and they will return to a lower energy configuration with less external magnetic field, thus "demagnetizing" the material.
The magnetic field B can be depicted via field lines (also called flux lines) – that is, a set of curves whose direction corresponds to the direction of B, and whose areal density is proportional to the magnitude of B. Gauss's law for magnetism is equivalent to the statement that the field lines have neither a beginning nor an end: Each one ...
The magnetic flux density does not measure how strong a magnetic field is, but only how strong the magnetic flux is in a given point or at a given distance (usually right above the magnet's surface). For the intrinsic order of magnitude of magnetic fields, see: Orders of magnitude (magnetic moment). Note:
For an electromagnet with a cylindrical bore, producing a pure multipole field of order , the stored magnetic energy is: =!. Here, is the permeability of free space, is the effective length of the magnet (the length of the magnet, including the fringing fields), is the number of turns in one of the coils (such that the entire device has turns), and is the current flowing in the coils.