Search results
Results From The WOW.Com Content Network
Linear discriminant analysis (LDA), normal discriminant analysis (NDA), canonical variates analysis (CVA), or discriminant function analysis is a generalization of Fisher's linear discriminant, a method used in statistics and other fields, to find a linear combination of features that characterizes or separates two or more classes of objects or ...
Decision boundaries are not always clear cut. That is, the transition from one class in the feature space to another is not discontinuous, but gradual. This effect is common in fuzzy logic based classification algorithms, where membership in one class or another is ambiguous. Decision boundaries can be approximations of optimal stopping boundaries.
In practice, as in most of statistics, the difficulties and subtleties are associated with modeling the probability distributions effectively—in this case, (= =). The Bayes classifier is a useful benchmark in statistical classification.
Algorithms of this nature use statistical inference to find the best class for a given instance. Unlike other algorithms, which simply output a "best" class, probabilistic algorithms output a probability of the instance being a member of each of the possible classes. The best class is normally then selected as the one with the highest probability.
In machine learning, a linear classifier makes a classification decision for each object based on a linear combination of its features.Such classifiers work well for practical problems such as document classification, and more generally for problems with many variables (), reaching accuracy levels comparable to non-linear classifiers while taking less time to train and use.
A classification model (classifier or diagnosis [7]) is a mapping of instances between certain classes/groups.Because the classifier or diagnosis result can be an arbitrary real value (continuous output), the classifier boundary between classes must be determined by a threshold value (for instance, to determine whether a person has hypertension based on a blood pressure measure).
Precision and recall. In statistical analysis of binary classification and information retrieval systems, the F-score or F-measure is a measure of predictive performance. It is calculated from the precision and recall of the test, where the precision is the number of true positive results divided by the number of all samples predicted to be positive, including those not identified correctly ...
Calculate the sum of squared deviations from the class means (SDCM). Choose a new way of dividing the data into classes, perhaps by moving one or more data points from one class to a different one. New class deviations are then calculated, and the process is repeated until the sum of the within class deviations reaches a minimal value. [1] [5]