Search results
Results From The WOW.Com Content Network
In statistics, pooled variance (also known as combined variance, composite variance, or overall variance, and written ) is a method for estimating variance of several different populations when the mean of each population may be different, but one may assume that the variance of each population is the same. The numerical estimate resulting from ...
In statistics and uncertainty analysis, the Welch–Satterthwaite equation is used to calculate an approximation to the effective degrees of freedom of a linear combination of independent sample variances, also known as the pooled degrees of freedom, [1] [2] corresponding to the pooled variance.
Student's t-test assumes that the sample means being compared for two populations are normally distributed, and that the populations have equal variances.Welch's t-test is designed for unequal population variances, but the assumption of normality is maintained. [1]
Suppose that we take a sample of size n from each of k populations with the same normal distribution N(μ, σ 2) and suppose that ¯ is the smallest of these sample means and ¯ is the largest of these sample means, and suppose S 2 is the pooled sample variance from these samples. Then the following random variable has a Studentized range ...
Then, a researcher might use sample contrasts between individual sample pairs, or post hoc tests using Dunn's test, which (1) properly employs the same rankings as the Kruskal–Wallis test, and (2) properly employs the pooled variance implied by the null hypothesis of the Kruskal–Wallis test in order to determine which of the sample pairs ...
Whereas Bessel's correction is required to get an unbiased estimator of the variance of any distribution, without assumption of normality, the expression for the pooled variance can only be derived as the minimum variance estimator and maximum likelihood estimator of the variance under the assumption of normality (see this math.stackexchange ...
Algorithms for calculating variance play a major role in computational statistics.A key difficulty in the design of good algorithms for this problem is that formulas for the variance may involve sums of squares, which can lead to numerical instability as well as to arithmetic overflow when dealing with large values.
σ 2 is the population variance; s n 2 is the biased sample variance (i.e., without Bessel's correction) s 2 is the unbiased sample variance (i.e., with Bessel's correction) The standard deviations will then be the square roots of the respective variances.