When.com Web Search

  1. Ad

    related to: sample dataset for decision tree research methodology 1

Search results

  1. Results From The WOW.Com Content Network
  2. Chi-square automatic interaction detection - Wikipedia

    en.wikipedia.org/wiki/Chi-square_automatic...

    Like other decision trees, CHAID's advantages are that its output is highly visual and easy to interpret. Because it uses multiway splits by default, it needs rather large sample sizes to work effectively, since with small sample sizes the respondent groups can quickly become too small for reliable analysis. [citation needed]

  3. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    A structured general-purpose dataset on life, work, and death of 1.22 million distinguished people. Public domain. A five-step method to infer birth and death years, gender, and occupation from community-submitted data to all language versions of the Wikipedia project. 1,223,009 Text Regression, Classification 2022 Paper [258] Dataset [259]

  4. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    Decision tree learning is a method commonly used in data mining. [3] The goal is to create a model that predicts the value of a target variable based on several input variables. A decision tree is a simple representation for classifying examples.

  5. Random forest - Wikipedia

    en.wikipedia.org/wiki/Random_forest

    Random forests or random decision forests is an ensemble learning method for classification, regression and other tasks that works by creating a multitude of decision trees during training. For classification tasks, the output of the random forest is the class selected by most trees.

  6. Decision tree - Wikipedia

    en.wikipedia.org/wiki/Decision_tree

    Decision trees, influence diagrams, utility functions, and other decision analysis tools and methods are taught to undergraduate students in schools of business, health economics, and public health, and are examples of operations research or management science methods. These tools are also used to predict decisions of householders in normal and ...

  7. Incremental learning - Wikipedia

    en.wikipedia.org/wiki/Incremental_learning

    In computer science, incremental learning is a method of machine learning in which input data is continuously used to extend the existing model's knowledge i.e. to further train the model. It represents a dynamic technique of supervised learning and unsupervised learning that can be applied when training data becomes available gradually over ...

  8. Incremental decision tree - Wikipedia

    en.wikipedia.org/wiki/Incremental_decision_tree

    An incremental decision tree algorithm is an online machine learning algorithm that outputs a decision tree. Many decision tree methods, such as C4.5 , construct a tree using a complete dataset. Incremental decision tree methods allow an existing tree to be updated using only new individual data instances, without having to re-process past ...

  9. Decision stump - Wikipedia

    en.wikipedia.org/wiki/Decision_stump

    The petal width is in centimetres. This particular stump achieves 94% accuracy on the Iris dataset for these two classes. A decision stump is a machine learning model consisting of a one-level decision tree. [1] That is, it is a decision tree with one internal node (the root) which is immediately connected to the terminal nodes (its leaves).