Search results
Results From The WOW.Com Content Network
Temperature-dependency of the heats of vaporization for water, methanol, benzene, and acetone. In thermodynamics, the enthalpy of vaporization (symbol ∆H vap), also known as the (latent) heat of vaporization or heat of evaporation, is the amount of energy that must be added to a liquid substance to transform a quantity of that substance into a gas.
Latent heat is energy released or absorbed by a body or a thermodynamic system during a constant-temperature process. Two common forms of latent heat are latent heat of fusion and latent heat of vaporization . These names describe the direction of energy flow when changing from one phase to the next: from solid to liquid, and liquid to gas.
L is the latent heat of vaporization at the temperature T, T C is the critical temperature, L 0 is the parameter that is equal to the heat of vaporization at zero temperature (T → 0), tanh is the hyperbolic tangent function. This equation was obtained in 1955 by Yu. I. Shimansky, at first empirically, and later derived theoretically.
After saturation, the rising air follows the moist (or wet) adiabatic lapse rate. [20] The release of latent heat is an important source of energy in the development of thunderstorms. While the dry adiabatic lapse rate is a constant 9.8 °C/km (5.4 °F per 1,000 ft, 3 °C/1,000 ft), the moist adiabatic lapse rate varies strongly with temperature.
In thermodynamics, Trouton's rule states that the (molar) entropy of vaporization is almost the same value, about 85–88 J/(K·mol), for various kinds of liquids at their boiling points. [1] The entropy of vaporization is defined as the ratio between the enthalpy of vaporization and the boiling temperature.
For a liquid–gas transition, is the molar latent heat (or molar enthalpy) of vaporization; for a solid–gas transition, is the molar latent heat of sublimation. If the latent heat is known, then knowledge of one point on the coexistence curve , for instance (1 bar, 373 K) for water, determines the rest of the curve.
It is a very efficient mode of heat transfer. In layman's terms, saturated steam is at its dew point at the corresponding temperature and pressure. The typical latent heat of vaporization (or condensation) is 970 BTU/lb (2,256 kJ/kg) for saturated steam at atmospheric pressure. [8]
J.A. Dean (ed.), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.4, Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds