When.com Web Search

  1. Ad

    related to: magnetic force between magnets and steel is classified

Search results

  1. Results From The WOW.Com Content Network
  2. Force between magnets - Wikipedia

    en.wikipedia.org/wiki/Force_between_magnets

    The magnetic pole model assumes that the magnetic forces between magnets are due to magnetic charges near the poles. This model works even close to the magnet when the magnetic field becomes more complicated, and more dependent on the detailed shape and magnetization of the magnet than just the magnetic dipole contribution.

  3. Ferromagnetism - Wikipedia

    en.wikipedia.org/wiki/Ferromagnetism

    An example of a permanent magnet formed from a ferromagnetic material is a refrigerator magnet. [2] Substances respond weakly to three other types of magnetism—paramagnetism, diamagnetism, and antiferromagnetism—but the forces are usually so weak that they can be detected only by lab instruments.

  4. Magnetism - Wikipedia

    en.wikipedia.org/wiki/Magnetism

    Magnetism is the class of physical attributes that occur through a magnetic field, which allows objects to attract or repel each other.Because both electric currents and magnetic moments of elementary particles give rise to a magnetic field, magnetism is one of two aspects of electromagnetism.

  5. Magnet - Wikipedia

    en.wikipedia.org/wiki/Magnet

    A magnet is a material or object that produces a magnetic field.This magnetic field is invisible but is responsible for the most notable property of a magnet: a force that pulls on other ferromagnetic materials, such as iron, steel, nickel, cobalt, etc. and attracts or repels other magnets.

  6. Magnetic field - Wikipedia

    en.wikipedia.org/wiki/Magnetic_field

    The force is particularly sensitive to rotations of the magnets due to magnetic torque. The force on each magnet depends on its magnetic moment and the magnetic field [note 7] of the other. To understand the force between magnets, it is useful to examine the magnetic pole model given above.

  7. Coercivity - Wikipedia

    en.wikipedia.org/wiki/Coercivity

    Coercivity, also called the magnetic coercivity, coercive field or coercive force, is a measure of the ability of a ferromagnetic material to withstand an external magnetic field without becoming demagnetized. Coercivity is usually measured in oersted or ampere/meter units and is denoted H C.

  8. Magnetization - Wikipedia

    en.wikipedia.org/wiki/Magnetization

    Paramagnetic materials have a weak induced magnetization in a magnetic field, which disappears when the magnetic field is removed. Ferromagnetic and ferrimagnetic materials have strong magnetization in a magnetic field, and can be magnetized to have magnetization in the absence of an external field, becoming a permanent magnet. Magnetization is ...

  9. Magnetic alloy - Wikipedia

    en.wikipedia.org/wiki/Magnetic_alloy

    A magnetic alloy is a combination of various metals from the periodic table such as ferrite that exhibits magnetic properties such as ferromagnetism. Typically the alloy contains one of the three main magnetic elements (which appear on the Bethe-Slater curve ): iron (Fe) , nickel (Ni) , or cobalt (Co) .