When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Differentiable function - Wikipedia

    en.wikipedia.org/wiki/Differentiable_function

    It is differentiable everywhere except at the point x = 0, where it makes a sharp turn as it crosses the y-axis. A cusp on the graph of a continuous function. At zero, the function is continuous but not differentiable. If f is differentiable at a point x 0, then f must also be continuous at x 0. In particular, any differentiable function must ...

  3. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    This set is called the zero set of f, and is not the same as the graph of f, which is a paraboloid. The implicit function theorem converts relations such as f(x, y) = 0 into functions. It states that if f is continuously differentiable, then around most points, the zero set of f looks like graphs of

  4. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    Product rule: For two differentiable functions f and g, () = +. An operation d with these two properties is known in abstract algebra as a derivation . They imply the power rule d ( f n ) = n f n − 1 d f {\displaystyle d(f^{n})=nf^{n-1}df} In addition, various forms of the chain rule hold, in increasing level of generality: [ 12 ]

  5. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    This can be seen graphically as a "kink" or a "cusp" in the graph at =. Even a function with a smooth graph is not differentiable at a point where its tangent is vertical: For instance, the function given by () = / is not differentiable at =. In summary, a function that has a derivative is continuous, but there are continuous functions that do ...

  6. Rolle's theorem - Wikipedia

    en.wikipedia.org/wiki/Rolle's_theorem

    Since f (−r) = f (r), Rolle's theorem applies, and indeed, there is a point where the derivative of f is zero. The theorem applies even when the function cannot be differentiated at the endpoints because it only requires the function to be differentiable in the open interval.

  7. Critical point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Critical_point_(mathematics)

    These concepts may be visualized through the graph of f: at a critical point, the graph has a horizontal tangent if one can be assigned at all. Notice how, for a differentiable function, critical point is the same as stationary point.

  8. Weierstrass function - Wikipedia

    en.wikipedia.org/wiki/Weierstrass_function

    When we try to draw a general continuous function, we usually draw the graph of a function which is Lipschitz or otherwise well-behaved. Moreover, the fact that the set of non-differentiability points for a monotone function is measure-zero implies that the rapid oscillations of Weierstrass' function are necessary to ensure that it is nowhere ...

  9. Symmetric derivative - Wikipedia

    en.wikipedia.org/wiki/Symmetric_derivative

    A lemma also established by Aull as a stepping stone to this theorem states that if f is continuous on the closed interval [a, b] and symmetrically differentiable on the open interval (a, b), and additionally f(b) > f(a), then there exist a point z in (a, b) where the symmetric derivative is non-negative, or with the notation used above, f s (z ...