When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Antoine equation - Wikipedia

    en.wikipedia.org/wiki/Antoine_equation

    The Antoine equation is a class of semi-empirical correlations describing the relation between vapor pressure and temperature for pure substances. The Antoine equation is derived from the Clausius–Clapeyron relation. The equation was presented in 1888 by the French engineer Louis Charles Antoine (1825–1897). [1]

  3. Vapor pressure - Wikipedia

    en.wikipedia.org/wiki/Vapor_pressure

    The atmospheric pressure boiling point of a liquid (also known as the normal boiling point) is the temperature at which the vapor pressure equals the ambient atmospheric pressure. With any incremental increase in that temperature, the vapor pressure becomes sufficient to overcome atmospheric pressure and cause the liquid to form vapor bubbles.

  4. Vapour pressure of water - Wikipedia

    en.wikipedia.org/wiki/Vapour_pressure_of_water

    The boiling point of water is the temperature at which the saturated vapor pressure equals the ambient pressure. Water supercooled below its normal freezing point has a higher vapor pressure than that of ice at the same temperature and is, thus, unstable. Calculations of the (saturation) vapor pressure of water are commonly used in meteorology.

  5. Tetens equation - Wikipedia

    en.wikipedia.org/wiki/Tetens_equation

    where temperature T is in degrees Celsius (°C) and saturation vapor pressure P is in kilopascals (kPa). According to Monteith and Unsworth, "Values of saturation vapour pressure from Tetens' formula are within 1 Pa of exact values up to 35 °C." Murray (1967) provides Tetens' equation for temperatures below 0 °C: [3]

  6. Vapor pressures of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Vapor_pressures_of_the...

    Values are given in terms of temperature necessary to reach the specified pressure. Valid results within the quoted ranges from most equations are included in the table for comparison. A conversion factor is included into the original first coefficients of the equations to provide the pressure in pascals (CR2: 5.006, SMI: -0.875).

  7. Clausius–Clapeyron relation - Wikipedia

    en.wikipedia.org/wiki/Clausius–Clapeyron_relation

    The Clausius–Clapeyron relation, in chemical thermodynamics, specifies the temperature dependence of pressure, most importantly vapor pressure, at a discontinuous phase transition between two phases of matter of a single constituent. It is named after Rudolf Clausius [1] and Benoît Paul Émile Clapeyron. [2]

  8. Goff–Gratch equation - Wikipedia

    en.wikipedia.org/wiki/Goff–Gratch_equation

    e * is the saturation water vapor pressure T is the absolute air temperature in kelvins T st is the steam-point (i.e. boiling point at 1 atm.) temperature (373.15 K) e * st is e * at the steam-point pressure (1 atm = 1013.25 hPa) Similarly, the correlation for the saturation water vapor pressure over ice is:

  9. Arden Buck equation - Wikipedia

    en.wikipedia.org/wiki/Arden_Buck_equation

    The Arden Buck equations are a group of empirical correlations that relate the saturation vapor pressure to temperature for moist air. The curve fits have been optimized for more accuracy than the Goff–Gratch equation in the range −80 to 50 °C (−112 to 122 °F).