Search results
Results From The WOW.Com Content Network
Center distance. Center distance (operating) is the shortest distance between non-intersecting axes. It is measured along the mutual perpendicular to the axes, called the line of centers. It applies to spur gears, parallel axis or crossed axis helical gears, and worm gearing. [1]
Standard profile angles are established in connection with standard proportions of gear teeth and standard gear cutting tools. Involute gears operate together correctly after a change of center distance, and gears designed for a different center distance can be generated correctly by standard tools. A change of center distance is accomplished ...
Gear inches is an imperial measure corresponding to the diameter in inches of the drive wheel of a penny-farthing bicycle with equivalent (direct-drive) gearing. A commonly used metric alternative is known as metres of development or rollout distance, which specifies how many metres a bicycle travels per revolution of the crank.
Distance between the root circle of a gear and the addendum circle of its mate. Working depth Depth of engagement of two gears, that is, the sum of their operating addendums. Circular pitch, p Distance from one face of a tooth to the corresponding face of an adjacent tooth on the same gear, measured along the pitch circle. Diametral pitch, DP
Factors affecting the amount of backlash required in a gear train include errors in profile, pitch, tooth thickness, helix angle and center distance, and run-out. The greater the accuracy the smaller the backlash needed. Backlash is most commonly created by cutting the teeth deeper into the gears than the ideal depth.
Meshing of two spur gears with involute external teeth. z 1 = 20, z 2 = 50, α = 20°, ξ 1 = ξ 2 = 0, ISO 53:1998. The lower (green) gear is the driving one. The working (active) part of the line of action is shown in blue, which is the locus of all teeth contact points.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Radius of gyration (in polymer science)(, unit: nm or SI unit: m): For a macromolecule composed of mass elements, of masses , =1,2,…,, located at fixed distances from the centre of mass, the radius of gyration is the square-root of the mass average of over all mass elements, i.e.,