Search results
Results From The WOW.Com Content Network
Amorphous silicon (a-Si) is the non-crystalline form of silicon used for solar cells and thin-film transistors in LCDs. Used as semiconductor material for a-Si solar cells, or thin-film silicon solar cells, it is deposited in thin films onto a variety of flexible substrates, such as glass, metal and plastic. Amorphous silicon cells generally ...
For most crystalline silicon solar cells the change in V OC with temperature is about −0.50%/°C, though the rate for the highest-efficiency crystalline silicon cells is around −0.35%/°C. By way of comparison, the rate for amorphous silicon solar cells is −0.20 to −0.30%/°C, depending on how the cell is made.
1946 – Russell Ohl patented the modern junction semiconductor solar cell, [15] while working on the series of advances that would lead to the transistor. 1948 - Introduction to the World of Semiconductors states Kurt Lehovec may have been the first to explain the photo-voltaic effect in the peer reviewed journal Physical Review. [16] [17]
Left side: solar cells made of polycrystalline silicon Right side: polysilicon rod (top) and chunks (bottom). Polycrystalline silicon, or multicrystalline silicon, also called polysilicon, poly-Si, or mc-Si, is a high purity, polycrystalline form of silicon, used as a raw material by the solar photovoltaic and electronics industry.
Intrinsic n-type, difficult to dope p-type, but can be p-type doped with nitrogen. Possible use in optoelectronics. Tested for high-efficiency solar cells. II-VI: 2: Cadmium sulfide: CdS: 2.42 [6] direct: Used in photoresistors and solar cells; CdS/Cu 2 S was the first efficient solar cell. Used in solar cells with CdTe. Common as quantum dots ...
Crystalline-silicon solar cells are made of either Poly Silicon (left side) or Mono Silicon (right side).. Crystalline silicon or (c-Si) is the crystalline forms of silicon, either polycrystalline silicon (poly-Si, consisting of small crystals), or monocrystalline silicon (mono-Si, a continuous crystal).
The favorable values in the table below justify the choice of materials typically used for multi-junction solar cells: InGaP for the top sub-cell (E g = 1.8–1.9 eV), InGaAs for the middle sub-cell (E g = 1.4 eV), and Germanium for the bottom sub-cell (E g = 0.67 eV). The use of Ge is mainly due to its lattice constant, robustness, low cost ...
Gallium arsenide is an important semiconductor material for high-cost, high-efficiency solar cells and is used for single-crystalline thin-film solar cells and for multi-junction solar cells. [35] The first known operational use of GaAs solar cells in space was for the Venera 3 mission, launched in 1965.