Ad
related to: completing the square corbettmaths textbook
Search results
Results From The WOW.Com Content Network
In elementary algebra, completing the square is a technique for converting a quadratic polynomial of the form + + to the form + for some values of and . [1] In terms of a new quantity x − h {\displaystyle x-h} , this expression is a quadratic polynomial with no linear term.
To complete the square, form a squared binomial on the left-hand side of a quadratic equation, from which the solution can be found by taking the square root of both sides. The standard way to derive the quadratic formula is to apply the method of completing the square to the generic quadratic equation a x 2 + b x + c = 0 {\displaystyle ...
Completing_the_square.ogv (Ogg Theora video file, length 1 min 9 s, 640 × 480 pixels, 758 kbps, file size: 6.22 MB) This is a file from the Wikimedia Commons . Information from its description page there is shown below.
What links here; Upload file; Special pages; Printable version; Page information
In 628 AD, Brahmagupta, an Indian mathematician, gave in his book Brāhmasphuṭasiddhānta the first explicit (although still not completely general) solution of the quadratic equation ax 2 + bx = c as follows: "To the absolute number multiplied by four times the [coefficient of the] square, add the square of the [coefficient of the] middle ...
This is also an application of completing the square, allowing us to write a quadratic polyomial of three variables in which all terms have degree two, as the sum of three squares. (My inspiration was a multivariate calculus problem: Create a tranformation to map the ellipsoid x 2 + 4 x y + 8 y 2 + 4 y z + 6 z 2 − 2 x z = 9 , {\displaystyle x ...
This corresponds to a set of y values whose product is a square number, i.e. one whose factorization has only even exponents. The products of x and y values together form a congruence of squares. This is a classic system of linear equations problem, and can be efficiently solved using Gaussian elimination as soon as the number of rows exceeds ...
Retrieved from "https://en.wikipedia.org/w/index.php?title=Completing_the_cube&oldid=1143128362"