When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Tetrahedron

    In other words, if C is the centroid of the base, the distance from C to a vertex of the base is twice that from C to the midpoint of an edge of the base. This follows from the fact that the medians of a triangle intersect at its centroid, and this point divides each of them in two segments, one of which is twice as long as the other (see proof).

  3. Four-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Four-dimensional_space

    The cube's vertex-first projection has three tetragons surrounding a vertex, but the tesseract's vertex-first projection has four hexahedral volumes surrounding a vertex. Just as the nearest corner of the cube is the one lying at the center of the image, so the nearest vertex of the tesseract lies not on the boundary of the projected volume ...

  4. Tesseract - Wikipedia

    en.wikipedia.org/wiki/Tesseract

    The unit tesseract in a Cartesian coordinate system for 4-dimensional space has two opposite vertices at coordinates [0, 0, 0, 0] and [1, 1, 1, 1], and other vertices with coordinates at all possible combinations of 0 s and 1 s. It is the Cartesian product of the closed unit interval [0, 1] in each axis.

  5. Cartesian coordinate system - Wikipedia

    en.wikipedia.org/wiki/Cartesian_coordinate_system

    A Cartesian coordinate system in two dimensions (also called a rectangular coordinate system or an orthogonal coordinate system [8]) is defined by an ordered pair of perpendicular lines (axes), a single unit of length for both axes, and an orientation for each axis. The point where the axes meet is taken as the origin for both, thus turning ...

  6. Circumconic and inconic - Wikipedia

    en.wikipedia.org/wiki/Circumconic_and_inconic

    The inellipse with the largest area is the Steiner inellipse, also called the midpoint inellipse, with its center at the triangle's centroid. [ 3 ] : p.145 In general, the ratio of the inellipse's area to the triangle's area, in terms of the unit-sum barycentric coordinates ( α, β, γ ) of the inellipse's center, is [ 3 ] : p.143

  7. Four-vertex theorem - Wikipedia

    en.wikipedia.org/wiki/Four-vertex_theorem

    The four-vertex theorem was first proved for convex curves (i.e. curves with strictly positive curvature) in 1909 by Syamadas Mukhopadhyaya. [8] His proof utilizes the fact that a point on the curve is an extremum of the curvature function if and only if the osculating circle at that point has fourth-order contact with the curve; in general the osculating circle has only third-order contact ...

  8. Homogeneous coordinates - Wikipedia

    en.wikipedia.org/wiki/Homogeneous_coordinates

    Möbius's original formulation of homogeneous coordinates specified the position of a point as the center of mass (or barycenter) of a system of three point masses placed at the vertices of a fixed triangle. Points within the triangle are represented by positive masses and points outside the triangle are represented by allowing negative masses.

  9. 16-cell - Wikipedia

    en.wikipedia.org/wiki/16-cell

    The 16-cell is the second in the sequence of 6 convex regular 4-polytopes (in order of size and complexity). [a]Each of its 4 successor convex regular 4-polytopes can be constructed as the convex hull of a polytope compound of multiple 16-cells: the 16-vertex tesseract as a compound of two 16-cells, the 24-vertex 24-cell as a compound of three 16-cells, the 120-vertex 600-cell as a compound of ...