Search results
Results From The WOW.Com Content Network
An example of a new source of heat "turning on" within an object, causing transient conduction, is an engine starting in an automobile. In this case, the transient thermal conduction phase for the entire machine is over, and the steady-state phase appears, as soon as the engine reaches steady-state operating temperature .
An example of steady state conduction is the heat flow through walls of a warm house on a cold day—inside the house is maintained at a high temperature and, outside, the temperature stays low, so the transfer of heat per unit time stays near a constant rate determined by the insulation in the wall and the spatial distribution of temperature ...
The exact mechanisms of thermal conduction are poorly understood in liquids: there is no molecular picture which is both simple and accurate. An example of a simple but very rough theory is that of Bridgman, in which a liquid is ascribed a local molecular structure similar to that of a solid, i.e. with molecules located approximately on a ...
In physics, thermal contact conductance is the study of heat conduction between solid or liquid bodies in thermal contact. The thermal contact conductance coefficient , h c {\displaystyle h_{c}} , is a property indicating the thermal conductivity , or ability to conduct heat , between two bodies in contact.
is the thermal conductivity (W/(K·m)) of the sample; is the thermal resistivity (K·m/W) of the sample; is the cross-sectional area (m 2) perpendicular to the path of heat flow. In terms of the temperature gradient across the sample and heat flux through the sample, the relationship is:
Conduction heat flux q k for ideal gas is derived with the gas kinetic theory or the Boltzmann transport equations, and the thermal conductivity is =, -, where u f 2 1/2 is the RMS (root mean square) thermal velocity (3k B T/m from the MB distribution function, m: atomic mass) and τ f-f is the relaxation time (or intercollision time period ...
For example, when water is heated on a stove, hot water from the bottom of the pan is displaced (or forced up) by the colder denser liquid, which falls. After heating has stopped, mixing and conduction from this natural convection eventually result in a nearly homogeneous density, and even temperature.
Sample 1 L 423 385 358 311 346 347 350 360 Sample 2 L 353 360 366 363 365 Lists: TPRC I page 75 curve 129 [8] Taga, M., periodical First run: 378 Second run: 374 Third run: 378 Fourth run: 382 List: TPRC I page 75 curve 129 [8] 80.06 95.34 115.62 135.53 159.46 181.56 198.35 217.30 198.53 220.90 240.88 257.38 275.40 363.2 363.2 363.2 363.2