Search results
Results From The WOW.Com Content Network
The agreement of the other field with the red arrows reveals an alternative definition of the sign convention: that a positive reflection or transmission coefficient is one for which the field vector in the plane of incidence points towards the same medium before and after reflection or transmission.
Electrons in pigment molecules can exist at specific energy levels. Under normal circumstances, they are at the lowest possible energy level, the ground state. However, absorption of light of the right photon energy can lift them to a higher energy level. Any light that has too little or too much energy cannot be absorbed and is reflected.
Chlorophyll, the most abundant plant pigment, is most efficient in capturing red and blue light. Accessory pigments such as carotenes and xanthophylls harvest some green light and pass it on to the photosynthetic process, but enough of the green wavelengths are reflected to give leaves their characteristic color.
The fraction of absorbed photosynthetically active radiation (FAPAR, sometimes also noted fAPAR or fPAR) is the fraction of the incoming solar radiation in the photosynthetically active radiation spectral region that is absorbed by a photosynthetic organism, typically describing the light absorption across an integrated plant canopy.
An overview of absorption of electromagnetic radiation.This example shows the general principle using visible light as a specific example. A white light source—emitting light of multiple wavelengths—is focused on a sample (the pairs of complementary colors are indicated by the yellow dotted lines).
In actuality, however, plants do not absorb all incoming sunlight (due to reflection, respiration requirements of photosynthesis and the need for optimal solar radiation levels) and do not convert all harvested energy into biomass, which results in a maximum overall photosynthetic efficiency of 3 to 6% of total solar radiation. [1]
The optical properties of a material define how it interacts with light. The optical properties of matter are studied in optical physics (a subfield of optics) and applied in materials science. The optical properties of matter include: Refractive index; Dispersion; Transmittance and Transmission coefficient; Absorption; Scattering; Turbidity
It forms the foundation of light transport theory, which models how light interacts with surfaces, volumes, and media. Energy Transfer Models: Light interacts with media through absorption, reflection, and transmission. These processes are governed by the rendering equation, which models the distribution of light in a scene. [1]