Search results
Results From The WOW.Com Content Network
A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...
The square root of 3 also appears in algebraic expressions for various other trigonometric constants, including [3] the sines of 3°, 12°, 15°, 21°, 24°, 33°, 39°, 48°, 51°, 57°, 66°, 69°, 75°, 78°, 84°, and 87°. It is the distance between parallel sides of a regular hexagon with sides of length 1.
The square root of a positive integer is the product of the roots of its prime factors, because the square root of a product is the product of the square roots of the factors. Since p 2 k = p k , {\textstyle {\sqrt {p^{2k}}}=p^{k},} only roots of those primes having an odd power in the factorization are necessary.
The principal square root of a real positive semidefinite matrix is real. [3] The principal square root of a positive definite matrix is positive definite; more generally, the rank of the principal square root of A is the same as the rank of A. [3] The operation of taking the principal square root is continuous on this set of matrices. [4]
The RMS value of a set of values (or a continuous-time waveform) is the square root of the arithmetic mean of the squares of the values, or the square of the function that defines the continuous waveform. In the case of a set of n values {,, …,}, the RMS is
A root of degree 2 is called a square root and a root of degree 3, a cube root. Roots of higher degree are referred by using ordinal numbers, as in fourth root, twentieth root, etc. The computation of an n th root is a root extraction. For example, 3 is a square root of 9, since 3 2 = 9, and −3 is also a square root of 9, since (−3) 2 = 9.
The mean value theorem ensures that if there is a root of f in X k, then it is also in X k + 1. Moreover, the hypothesis on F′ ensures that X k + 1 is at most half the size of X k when m is the midpoint of Y , so this sequence converges towards [ x* , x* ] , where x* is the root of f in X .
What links here; Related changes; Upload file; Special pages; Permanent link; Page information; Cite this page; Get shortened URL; Download QR code