Search results
Results From The WOW.Com Content Network
The constant chord theorem is a statement in elementary geometry about a property of certain chords in two intersecting circles. The circles k 1 {\displaystyle k_{1}} and k 2 {\displaystyle k_{2}} intersect in the points P {\displaystyle P} and Q {\displaystyle Q} .
Mrs. Miniver's problem is a geometry problem about the area of circles. It asks how to place two circles and of given radii in such a way that the lens formed by intersecting their two interiors has equal area to the symmetric difference of and (the area contained in one but not both circles). [1]
To generate the line that bisects the angle between two given rays [clarification needed] requires a circle of arbitrary radius centered on the intersection point P of the two lines (2). The intersection points of this circle with the two given lines (5) are T1 and T2. Two circles of the same radius, centered on T1 and T2, intersect at points P ...
Given the circle C(D) whose center C lies on the line AB, find the points P and Q, the intersection points of the circle and the line. [15] Construct point D' ≠ D as the other intersection of circles A(D) and C(D). Construct point F as the intersection of circles C(DD' ) and D(C). (F is the fourth vertex of parallelogram CD'DF.)
intersection of two polygons: window test. If one wants to determine the intersection points of two polygons, one can check the intersection of any pair of line segments of the polygons (see above). For polygons with many segments this method is rather time-consuming. In practice one accelerates the intersection algorithm by using window tests ...
The theorem can be reversed to say: for three circles intersecting at M, a line can be drawn from any point A on one circle, through its intersection C´ with another to give B (at the second intersection). B is then similarly connected, via intersection at A´ of the second and third circles, giving point C.
The value of the two products in the chord theorem depends only on the distance of the intersection point S from the circle's center and is called the absolute value of the power of S; more precisely, it can be stated that: | | | | = | | | | = where r is the radius of the circle, and d is the distance between the center of the circle and the ...
The similarity yields an equation for ratios which is equivalent to the equation of the theorem given above: = | | | | = | | | | Next to the intersecting chords theorem and the tangent-secant theorem , the intersecting secants theorem represents one of the three basic cases of a more general theorem about two intersecting lines and a circle ...