Search results
Results From The WOW.Com Content Network
where I is the moment of inertia of the beam cross-section and c is the distance of the top of the beam from the neutral axis (see beam theory for more details). For a beam of cross-sectional area a and height h , the ideal cross-section would have half the area at a distance h / 2 above the cross-section and the other half at a ...
In the mechanics of materials, the strength of a material is its ability to withstand an applied load without failure or plastic deformation.The field of strength of materials deals with forces and deformations that result from their acting on a material.
Structural channel, or {C-beam, or 'C' cross-section; Tee (T-shaped cross-section) Rail profile (asymmetrical Ɪ-beam) Railway rail; Vignoles rail; Flanged R rail; Grooved rail; Bar, a long piece with a rectangular cross section, but not so wide so as to be called a sheet. Rod, a round or square section long compared to its width; see also ...
A beam is a structural element that primarily resists loads applied laterally across the beam's axis (an element designed to carry a load pushing parallel to its axis would be a strut or column). Its mode of deflection is primarily by bending , as loads produce reaction forces at the beam's support points and internal bending moments , shear ...
The portion of the beam that is in tension may crack. The size and length of cracks is dependent on the magnitude of the bending moment and the design of the reinforcing in the beam at the point under consideration. Reinforced concrete beams are designed to crack in tension rather than in compression.
Unlike an I-beam, a T-beam lacks a bottom flange, which carries savings in terms of materials, but at the loss of resistance to tensile forces. [5] T- beam designs come in many sizes, lengths and widths to suit where they are to be used (eg highway bridge, underground parking garage) and how they have to resist the tension, compression and shear stresses associated with beam bending in their ...
Early rails were made of wood, cast iron or wrought iron. All modern rails are hot rolled steel with a cross section approximate to an I-beam, but asymmetric about a horizontal axis (however see grooved rail below). The head is profiled to resist wear and to give a good ride, and the foot profiled to suit the fixing system.
There is a difference between the engineering stress and the true stress. By its basic definition the uniaxial stress is given by: ´ =, where F is load applied [N] and A is area [m 2]. As stated, the area of the specimen varies on compression.