Search results
Results From The WOW.Com Content Network
Figure 1. The light path through a Michelson interferometer.The two light rays with a common source combine at the half-silvered mirror to reach the detector. They may either interfere constructively (strengthening in intensity) if their light waves arrive in phase, or interfere destructively (weakening in intensity) if they arrive out of phase, depending on the exact distances between the ...
A simple two-element optical interferometer. Light from two small telescopes (shown as lenses) is combined using beam splitters at detectors 1, 2, 3 and 4.The elements create a 1/4 wave delay in the light, allowing the phase and amplitude of the interference visibility to be measured, thus giving information about the shape of the light source.
An atom interferometer uses the wave-like nature of atoms in order to produce interference. In atom interferometers, the roles of matter and light are reversed compared to the laser based interferometers, i.e. the beam splitter and mirrors are lasers while the source emits matter waves (the atoms) rather than light.
The Michelson interferometer (among other interferometer configurations) is employed in many scientific experiments and became well known for its use by Michelson and Edward Morley in the famous Michelson–Morley experiment (1887) [1] in a configuration which would have detected the Earth's motion through the supposed luminiferous aether that ...
An astronomical interferometer or telescope array is a set of separate telescopes, mirror segments, or radio telescope antennas that work together as a single telescope to provide higher resolution images of astronomical objects such as stars, nebulas and galaxies by means of interferometry.
Principle of the shearing interferometer. The shearing interferometer is an extremely simple means to observe interference and to use this phenomenon to test the collimation of light beams, especially from laser sources which have a coherence length which is usually significantly longer than the thickness of the shear plate (see graphics) so that the basic condition for interference is fulfilled.
While all three of these interferometers work with a white light source, only the first, the diffraction grating interferometer, is truly achromatic. [8] Here the vertical scanning or coherence probe interferometers are discussed in detail due to their extensive use for surface metrology in today’s high-precision industrial applications.
Figure 1. Fizeau interferometer. A Fizeau interferometer [1] is an interferometric arrangement whereby two reflecting surfaces are placed facing each other. As seen in Fig 1, the rear-surface reflected light from the transparent first reflector is combined with front-surface reflected light from the second reflector to form interference fringes.