Search results
Results From The WOW.Com Content Network
A disulfide ensemble is a grouping of all disulfide species with the same number of disulfide bonds, and is usually denoted as the 1S ensemble, the 2S ensemble, etc. for disulfide species having one, two, etc. disulfide bonds. Thus, the (26–84) disulfide species belongs to the 1S ensemble, whereas the (26–84, 58–110) species belongs to ...
Conversion of simple disulfides to thiosulfinates results in a considerable weakening of the S–S bond from about 47.8 to 28.0 kcal mol −1 for the S-S bond in PhS(O)SPh and from about 63.2 to 39.3 kcal mol −1 for the S-S bond in MeS(O)SMe, [14] with the consequence that most thiosulfinates are both unstable and quite reactive.
DsbC (Disulfide bond C) is a prokaryotic disulfide bond isomerase. The formation of native disulfide bonds play an important role in the proper folding of proteins and stabilize tertiary structures of the protein. [1] [2] [3] DsbC is one of 6 proteins in the Dsb family in prokaryotes. The other proteins are DsbA, DsbB, DsbD, DsbE and DsbG. [4]
TCEP is often used as a reducing agent to break disulfide bonds within and between proteins as a preparatory step for gel electrophoresis.. Compared to the other two most common agents used for this purpose (dithiothreitol and β-mercaptoethanol), TCEP has the advantages of being odorless, a more powerful reducing agent, an irreversible reducing agent (in the sense that TCEP does not ...
DsbA is a bacterial thiol disulfide oxidoreductase (TDOR). DsbA is a key component of the Dsb (disulfide bond) family of enzymes. DsbA catalyzes intrachain disulfide bond formation as peptides emerge into the cell's periplasm. [2] Structurally, DsbA contains a thioredoxin domain with an inserted helical domain of unknown function. [3]
The formation of multiple native disulfides remains challenging of native peptide synthesis by solid-phase methods. Random chain combination typically results in several products with nonnative disulfide bonds. [41] Stepwise formation of disulfide bonds is typically the preferred method, and performed with thiol protecting groups. [42]
The knottin scaffold is a very special disulfide-through-disulfide knot, in which the III-VI disulfide bond crosses the macrocycle formed by two other disulfide bonds (I-IV and II-V) and the interconnecting backbone segments, where I-VI indicates the six cysteine residues starting from the N-terminus.
The structure of hydrogen disulfide is similar to that of hydrogen peroxide, with C 2 point group symmetry. Both molecules are distinctly nonplanar. The dihedral angle between the H a −S−S and S−S−H b planes is 90.6°, compared with 111.5° in H 2 O 2. The H−S−S bond angle is 92°, close to 90° for unhybridized divalent sulfur. [1]