Ad
related to: find vertex of parabola formula
Search results
Results From The WOW.Com Content Network
The vertex of a parabola is the place where it turns; hence, it is also called the turning point. If the quadratic function is in vertex form, the vertex is ( h , k ) . Using the method of completing the square, one can turn the standard form
Suppose a system of Cartesian coordinates is used such that the vertex of the parabola is at the origin, and the axis of symmetry is the y axis. The parabola opens upward. It is shown elsewhere in this article that the equation of the parabola is 4fy = x 2, where f is the focal length.
On a parabola, the sole vertex lies on the axis of symmetry and in a quadratic of the form: a x 2 + b x + c {\displaystyle ax^{2}+bx+c\,\!} it can be found by completing the square or by differentiation . [ 2 ]
If the parabola's vertex is on the -axis, then the corresponding equation has a single repeated root on the line of symmetry, and this distance term is zero; algebraically, the discriminant = .
if B 2 − 4AC < 0, the equation represents an ellipse; if A = C and B = 0, the equation represents a circle, which is a special case of an ellipse; if B 2 − 4AC = 0, the equation represents a parabola; if B 2 − 4AC > 0, the equation represents a hyperbola; if A + C = 0, the equation represents a rectangular hyperbola.
One way to see this is to note that the graph of the function f(x) = x 2 is a parabola whose vertex is at the origin (0, 0). Therefore, the graph of the function f(x − h) = (x − h) 2 is a parabola shifted to the right by h whose vertex is at (h, 0), as shown in the top figure.
If the parabola does not intersect the x-axis, there are two complex conjugate roots. Although these roots cannot be visualized on the graph, their real and imaginary parts can be. [17] Let h and k be respectively the x-coordinate and the y-coordinate of the vertex of the parabola (that is the point with maximal or minimal y-coordinate.
In this position, the hyperbolic paraboloid opens downward along the x-axis and upward along the y-axis (that is, the parabola in the plane x = 0 opens upward and the parabola in the plane y = 0 opens downward). Any paraboloid (elliptic or hyperbolic) is a translation surface, as it can be generated by a moving parabola directed by a second ...