Search results
Results From The WOW.Com Content Network
The PCP theorem states that NP = PCP[O(log n), O(1)],. where PCP[r(n), q(n)] is the class of problems for which a probabilistically checkable proof of a solution can be given, such that the proof can be checked in polynomial time using r(n) bits of randomness and by reading q(n) bits of the proof, correct proofs are always accepted, and incorrect proofs are rejected with probability at least 1/2.
The short-needle problem can also be solved without any integration, in a way that explains the formula for p from the geometric fact that a circle of diameter t will cross the distance t strips always (i.e. with probability 1) in exactly two spots. This solution was given by Joseph-Émile Barbier in 1860 [5] and is also referred to as "Buffon ...
This is achieved by constructing random constraints such that, with non-negligible probability, exactly one solution satisfies these additional constraints if the solution space is not empty. Isolation lemmas have important applications in computer science, such as the Valiant–Vazirani theorem and Toda's theorem in computational complexity ...
The host always reveals a goat and always offers a switch. If and only if he has a choice, he chooses the leftmost goat with probability p (which may depend on the player's initial choice) and the rightmost door with probability q = 1 − p. [38] [34] If the host opens the rightmost ( P=1/3 + q/3 ) door, switching wins with probability 1/(1+q).
The conditional probability at any interior node is the average of the conditional probabilities of its children. The latter property is important because it implies that any interior node whose conditional probability is less than 1 has at least one child whose conditional probability is less than 1.
Given a claimed solution x with length n, which might be false, the prover produces a proof π which states x solves L (x ∈ L, the proof is a string ∈ Σ ∗). And the verifier is a randomized oracle Turing Machine V (the verifier ) that checks the proof π for the statement that x solves L (or x ∈ L ) and decides whether to accept the ...
In the simplest case, if one allocates balls into bins (with =) sequentially one by one, and for each ball one chooses random bins at each step and then allocates the ball into the least loaded of the selected bins (ties broken arbitrarily), then with high probability the maximum load is: [8]
In probability theory, the coupon collector's problem refers to mathematical analysis of "collect all coupons and win" contests. It asks the following question: if each box of a given product (e.g., breakfast cereals) contains a coupon, and there are n different types of coupons, what is the probability that more than t boxes need to be bought ...