When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Errors and residuals - Wikipedia

    en.wikipedia.org/wiki/Errors_and_residuals

    In regression analysis, the distinction between errors and residuals is subtle and important, and leads to the concept of studentized residuals. Given an unobservable function that relates the independent variable to the dependent variable – say, a line – the deviations of the dependent variable observations from this function are the ...

  3. Errors-in-variables model - Wikipedia

    en.wikipedia.org/wiki/Errors-in-variables_model

    Linear errors-in-variables models were studied first, probably because linear models were so widely used and they are easier than non-linear ones. Unlike standard least squares regression (OLS), extending errors in variables regression (EiV) from the simple to the multivariable case is not straightforward, unless one treats all variables in the same way i.e. assume equal reliability.

  4. Residual sum of squares - Wikipedia

    en.wikipedia.org/wiki/Residual_sum_of_squares

    In statistics, the residual sum of squares (RSS), also known as the sum of squared residuals (SSR) or the sum of squared estimate of errors (SSE), is the sum of the squares of residuals (deviations predicted from actual empirical values of data). It is a measure of the discrepancy between the data and an estimation model, such as a linear ...

  5. Least squares - Wikipedia

    en.wikipedia.org/wiki/Least_squares

    The result of fitting a set of data points with a quadratic function Conic fitting a set of points using least-squares approximation. In regression analysis, least squares is a parameter estimation method based on minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the results of each ...

  6. PRESS statistic - Wikipedia

    en.wikipedia.org/wiki/PRESS_statistic

    Models that are over-parameterised (over-fitted) would tend to give small residuals for observations included in the model-fitting but large residuals for observations that are excluded. The PRESS statistic has been extensively used in lazy learning and locally linear learning to speed-up the assessment and the selection of the neighbourhood size.

  7. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    A model with exactly one explanatory variable is a simple linear regression; a model with two or more explanatory variables is a multiple linear regression. [1] This term is distinct from multivariate linear regression , which predicts multiple correlated dependent variables rather than a single dependent variable.

  8. Generalized least squares - Wikipedia

    en.wikipedia.org/wiki/Generalized_least_squares

    The model is estimated by OLS or another consistent (but inefficient) estimator, and the residuals are used to build a consistent estimator of the errors covariance matrix (to do so, one often needs to examine the model adding additional constraints; for example, if the errors follow a time series process, a statistician generally needs some ...

  9. Breusch–Godfrey test - Wikipedia

    en.wikipedia.org/wiki/Breusch–Godfrey_test

    The Breusch–Godfrey test is a test for autocorrelation in the errors in a regression model. It makes use of the residuals from the model being considered in a regression analysis, and a test statistic is derived from these. The null hypothesis is that there is no serial correlation of any order up to p. [3]