Search results
Results From The WOW.Com Content Network
The notion of doubling time dates to interest on loans in Babylonian mathematics. Clay tablets from circa 2000 BCE include the exercise "Given an interest rate of 1/60 per month (no compounding), come the doubling time." This yields an annual interest rate of 12/60 = 20%, and hence a doubling time of 100% growth/20% growth per year = 5 years.
In comparison to batch culture, bacteria are maintained in exponential growth phase, and the growth rate of the bacteria is known. Related devices include turbidostats and auxostats. When Escherichia coli is growing very slowly with a doubling time of 16 hours in a chemostat most cells have a single chromosome. [1]
Therefore, the doubling time t d becomes a function of dilution rate D in steady state: t d = ln 2 D {\displaystyle t_{d}={\frac {\ln 2}{D}}} Each microorganism growing on a particular substrate has a maximal specific growth rate μ max (the rate of growth observed if growth is limited by internal constraints rather than external nutrients).
The Monod equation is a mathematical model for the growth of microorganisms. It is named for Jacques Monod (1910–1976, a French biochemist, Nobel Prize in Physiology or Medicine in 1965), who proposed using an equation of this form to relate microbial growth rates in an aqueous environment to the concentration of a limiting nutrient.
The growth constant k is the frequency (number of times per unit time) of growing by a factor e; in finance it is also called the logarithmic return, continuously compounded return, or force of interest. The e-folding time τ is the time it takes to grow by a factor e. The doubling time T is the time it takes to double.
Most commonly apparent in species that reproduce quickly and asexually, like bacteria, exponential growth is intuitive from the fact that each organism can divide and produce two copies of itself. Each descendent bacterium can itself divide, again doubling the population size (as displayed in the above graph). [2]
RGR is a concept relevant in cases where the increase in a state variable over time is proportional to the value of that state variable at the beginning of a time period. In terms of differential equations , if S {\displaystyle S} is the current size, and d S d t {\displaystyle {\frac {dS}{dt}}} its growth rate, then relative growth rate is
Luria and Delbrück [5] estimated the mutation rate (mutations per bacterium per unit time) from the equation = [ ()] where β is the cellular growth rate, n 0 is the initial number of bacteria in each culture, t is the time, and