When.com Web Search

  1. Ad

    related to: vector addition calculator with angles and degrees converter excel

Search results

  1. Results From The WOW.Com Content Network
  2. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    Rotation matrix. In linear algebra, a rotation matrix is a transformation matrix that is used to perform a rotation in Euclidean space. For example, using the convention below, the matrix. rotates points in the xy plane counterclockwise through an angle θ about the origin of a two-dimensional Cartesian coordinate system.

  3. Rodrigues' rotation formula - Wikipedia

    en.wikipedia.org/wiki/Rodrigues'_rotation_formula

    Rodrigues' rotation formula. In the theory of three-dimensional rotation, Rodrigues' rotation formula, named after Olinde Rodrigues, is an efficient algorithm for rotating a vector in space, given an axis and angle of rotation. By extension, this can be used to transform all three basis vectors to compute a rotation matrix in SO (3), the group ...

  4. Euler–Rodrigues formula - Wikipedia

    en.wikipedia.org/wiki/Euler–Rodrigues_formula

    In mathematics and mechanics, the Euler–Rodrigues formula describes the rotation of a vector in three dimensions. It is based on Rodrigues' rotation formula, but uses a different parametrization. The rotation is described by four Euler parameters due to Leonhard Euler. The Rodrigues' rotation formula (named after Olinde Rodrigues), a method ...

  5. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    Use the angle/axis formula to convert an angle/axis to a rotation matrix R then multiplying with a vector, or, similarly, use a formula to convert quaternion notation to a rotation matrix, then multiplying with a vector. Converting the angle/axis to R costs 12 multiplications, 2 function calls (sin, cos), and 10 additions/subtractions; from ...

  6. Conversion between quaternions and Euler angles - Wikipedia

    en.wikipedia.org/wiki/Conversion_between...

    Quaternion to Euler angles (in 3-2-1 sequence) conversion. A direct formula for the conversion from a quaternion to Euler angles in any of the 12 possible sequences exists. [2] For the rest of this section, the formula for the sequence Body 3-2-1 will be shown. If the quaternion is properly normalized, the Euler angles can be obtained from the ...

  7. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    In geometry, various formalisms exist to express a rotation in three dimensions as a mathematical transformation. In physics, this concept is applied to classical mechanics where rotational (or angular) kinematics is the science of quantitative description of a purely rotational motion. The orientation of an object at a given instant is ...

  8. Direction cosine - Wikipedia

    en.wikipedia.org/wiki/Direction_cosine

    Here α, β and γ are the direction cosines and the Cartesian coordinates of the unit vector v/|v|, and a, b and c are the direction angles of the vector v. The direction angles a, b and c are acute or obtuse angles, i.e., 0 ≤ a ≤ π, 0 ≤ b ≤ π and 0 ≤ c ≤ π, and they denote the angles formed between v and the unit basis vectors ...

  9. Dot product - Wikipedia

    en.wikipedia.org/wiki/Dot_product

    Dot product. In mathematics, the dot product or scalar product[note 1] is an algebraic operation that takes two equal-length sequences of numbers (usually coordinate vectors), and returns a single number. In Euclidean geometry, the dot product of the Cartesian coordinates of two vectors is widely used. It is often called the inner product (or ...