Search results
Results From The WOW.Com Content Network
The gamma function then is defined in the complex plane as the analytic continuation of this integral function: it is a meromorphic function which is holomorphic except at zero and the negative integers, where it has simple poles. The gamma function has no zeros, so the reciprocal gamma function 1 / Γ(z) is an entire function.
Repeated application of the recurrence relation for the lower incomplete gamma function leads to the power series expansion: [2] (,) = = (+) (+) = = (+ +). Given the rapid growth in absolute value of Γ(z + k) when k → ∞, and the fact that the reciprocal of Γ(z) is an entire function, the coefficients in the rightmost sum are well-defined, and locally the sum converges uniformly for all ...
The Gamma function can be defined for any complex value in the plane if we evaluate the integral along the Hankel contour. The Hankel contour is especially useful for expressing the Gamma function for any complex value because the end points of the contour vanish, and thus allows the fundamental property of the Gamma function to be satisfied ...
Thus computing the gamma function becomes a matter of evaluating only a small number of elementary functions and multiplying by stored constants. The Lanczos approximation was popularized by Numerical Recipes , according to which computing the gamma function becomes "not much more difficult than other built-in functions that we take for granted ...
In probability theory and statistics, the gamma distribution is a versatile two-parameter family of continuous probability distributions. [1] The exponential distribution, Erlang distribution, and chi-squared distribution are special cases of the gamma distribution. [2]
as the only positive function f , with domain on the interval x > 0, that simultaneously has the following three properties: f (1) = 1, and f (x + 1) = x f (x) for x > 0 and f is logarithmically convex. A treatment of this theorem is in Artin's book The Gamma Function, [4] which has been reprinted by the AMS in a collection of Artin's writings.
The gamma function is an important special function in mathematics.Its particular values can be expressed in closed form for integer and half-integer arguments, but no simple expressions are known for the values at rational points in general.
A detailed analysis of this spectrum is typically used to determine the identity and quantity of gamma emitters present in a gamma source, and is a vital tool in radiometric assay. The gamma spectrum is characteristic of the gamma-emitting nuclides contained in the source, just like in an optical spectrometer , the optical spectrum is ...