Search results
Results From The WOW.Com Content Network
Magnesium oxide (Mg O), or magnesia, is a white hygroscopic solid mineral that occurs naturally as periclase and is a source of magnesium (see also oxide). It has an empirical formula of MgO and consists of a lattice of Mg 2+ ions and O 2− ions held together by ionic bonding .
The structure of MgO 2 has been calculated as a triangular shape with the O 2 molecule binding side-on to the magnesium. This arrangement is a result of the Mg + donating charge to the oxygen and creating a Mg 2+ O 2 2−. The bond between to O 2 and the magnesium atom has an approximate dissociation energy of 90 kJ mol −1. [1]
Magnesium hydride was first prepared in 1951 by the reaction between hydrogen and magnesium under high temperature, pressure and magnesium iodide as a catalyst. [1] It reacts with water to release hydrogen gas; it decomposes at 287 °C, 1 bar: [2] MgH 2 → Mg + H 2. Magnesium can form compounds with the chemical formula MgX 2 (X=F
The international pictogram for oxidizing chemicals. Dangerous goods label for oxidizing agents. An oxidizing agent (also known as an oxidant, oxidizer, electron recipient, or electron acceptor) is a substance in a redox chemical reaction that gains or "accepts"/"receives" an electron from a reducing agent (called the reductant, reducer, or electron donor).
All magnesium is coated with a passivating layer of magnesium oxide, which inhibits reactions with the organic halide. Many methods have been developed to weaken this passivating layer, thereby exposing highly reactive magnesium to the organic halide. Mechanical methods include crushing of the Mg pieces in situ, rapid stirring, and sonication. [4]
Reactions are usually written as forward reactions in the direction in which they are spontaneous. Examples: Reaction of hydrogen and oxygen to form water. 2H 2 + O 2 ⇌ 2H 2 O. Dissociation of acetic acid in water into acetate ions and hydronium ions. CH 3 COOH + H 2 O ⇌ CH 3 COO − + H 3 O +
A single-displacement reaction, also known as single replacement reaction or exchange reaction, is an archaic concept in chemistry. It describes the stoichiometry of some chemical reactions in which one element or ligand is replaced by atom or group. [1] [2] [3] It can be represented generically as: + +
The strength of the metal-oxygen bond can be estimated in various ways. The hydration enthalpy, though based indirectly on experimental measurements, is the most reliable measure. The scale of values is based on an arbitrarily chosen zero, but this does not affect differences between the values for two metals.