Search results
Results From The WOW.Com Content Network
One application is the definition of inverse trigonometric functions. For example, the cosine function is injective when restricted to the interval [0, π]. The image of this restriction is the interval [−1, 1], and thus the restriction has an inverse function from [−1, 1] to [0, π], which is called arccosine and is denoted arccos.
Kronecker delta function: is a function of two variables, usually integers, which is 1 if they are equal, and 0 otherwise. Minkowski's question mark function: Derivatives vanish on the rationals. Weierstrass function: is an example of continuous function that is nowhere differentiable
Nowhere continuous function: is not continuous at any point of its domain; for example, the Dirichlet function. Homeomorphism: is a bijective function that is also continuous, and whose inverse is continuous. Open function: maps open sets to open sets. Closed function: maps closed sets to closed sets.
For example, simple functions attain only a finite number of values. Some authors also require simple functions to be measurable, as used in practice. A basic example of a simple function is the floor function over the half-open interval [1, 9), whose only values are {1
A function's being odd or even does not imply differentiability, or even continuity. For example, the Dirichlet function is even, but is nowhere continuous. In the following, properties involving derivatives, Fourier series, Taylor series are considered, and these concepts are thus supposed to be defined for the considered functions.
In mathematics, an elementary function is a function of a single variable (typically real or complex) that is defined as taking sums, products, roots and compositions of finitely many polynomial, rational, trigonometric, hyperbolic, and exponential functions, and their inverses (e.g., arcsin, log, or x 1/n).
This is a list of some well-known periodic functions. The constant function f (x) = c, where c is independent of x, is periodic with any period, but lacks a fundamental period. A definition is given for some of the following functions, though each function may have many equivalent definitions.
In mathematics, the floor function is the function that takes as input a real number x, and gives as output the greatest integer less than or equal to x, denoted ⌊x⌋ or floor(x). Similarly, the ceiling function maps x to the least integer greater than or equal to x , denoted ⌈ x ⌉ or ceil( x ) .