When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Line–line intersection - Wikipedia

    en.wikipedia.org/wiki/Lineline_intersection

    Lineline intersection. In Euclidean geometry, the intersection of a line and a line can be the empty set, a point, or another line. Distinguishing these cases and finding the intersection have uses, for example, in computer graphics, motion planning, and collision detection. In three-dimensional Euclidean geometry, if two lines are not in ...

  3. Line–sphere intersection - Wikipedia

    en.wikipedia.org/wiki/Line–sphere_intersection

    In analytic geometry, a line and a sphere can intersect in three ways: Intersection in two points. Methods for distinguishing these cases, and determining the coordinates for the points in the latter cases, are useful in a number of circumstances. For example, it is a common calculation to perform during ray tracing.

  4. Distance from a point to a line - Wikipedia

    en.wikipedia.org/.../Distance_from_a_point_to_a_line

    Distance from a point to a line. The distance (or perpendicular distance) from a point to a line is the shortest distance from a fixed point to any point on a fixed infinite line in Euclidean geometry. It is the length of the line segment which joins the point to the line and is perpendicular to the line. The formula for calculating it can be ...

  5. Line–plane intersection - Wikipedia

    en.wikipedia.org/wiki/Line–plane_intersection

    Line–plane intersection. The three possible plane-line relationships in three dimensions. (Shown in each case is only a portion of the plane, which extends infinitely far.) In analytic geometry, the intersection of a line and a plane in three-dimensional space can be the empty set, a point, or a line. It is the entire line if that line is ...

  6. Intersecting secants theorem - Wikipedia

    en.wikipedia.org/wiki/Intersecting_secants_theorem

    The similarity yields an equation for ratios which is equivalent to the equation of the theorem given above: = | | | | = | | | | Next to the intersecting chords theorem and the tangent-secant theorem , the intersecting secants theorem represents one of the three basic cases of a more general theorem about two intersecting lines and a circle ...

  7. Intersection (geometry) - Wikipedia

    en.wikipedia.org/wiki/Intersection_(geometry)

    For broader coverage of this topic, see Intersection (mathematics). The red dot represents the point at which the two lines intersect. In geometry, an intersection is a point, line, or curve common to two or more objects (such as lines, curves, planes, and surfaces). The simplest case in Euclidean geometry is the lineline intersection ...

  8. Ceva's theorem - Wikipedia

    en.wikipedia.org/wiki/Ceva's_theorem

    Ceva's theorem is a theorem of affine geometry, in the sense that it may be stated and proved without using the concepts of angles, areas, and lengths (except for the ratio of the lengths of two line segments that are collinear). It is therefore true for triangles in any affine plane over any field. A slightly adapted converse is also true: If ...

  9. Möller–Trumbore intersection algorithm - Wikipedia

    en.wikipedia.org/wiki/Möller–Trumbore...

    Möller–Trumbore intersection algorithm. The Möller–Trumbore ray-triangle intersection algorithm, named after its inventors Tomas Möller and Ben Trumbore, is a fast method for calculating the intersection of a ray and a triangle in three dimensions without needing precomputation of the plane equation of the plane containing the triangle. [1]