Search results
Results From The WOW.Com Content Network
In probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval [0, 1] or (0, 1) in terms of two positive parameters, denoted by alpha (α) and beta (β), that appear as exponents of the variable and its complement to 1, respectively, and control the shape of the distribution.
Beta function. In mathematics, the beta function, also called the Euler integral of the first kind, is a special function that is closely related to the gamma function and to binomial coefficients. It is defined by the integral. for complex number inputs such that .
The Beta distribution on [0,1], a family of two-parameter distributions with one mode, of which the uniform distribution is a special case, and which is useful in estimating success probabilities. The four-parameter Beta distribution, a straight-forward generalization of the Beta distribution to arbitrary bounded intervals [,].
The geometric distribution is the discrete probability distribution that describes when the first success in an infinite sequence of independent and identically distributed Bernoulli trials occurs. Its probability mass function depends on its parameterization and support.
The reciprocal 1/ X of a random variable X, is a member of the same family of distribution as X, in the following cases: Cauchy distribution, F distribution, log logistic distribution. Examples: If X is a Cauchy (μ, σ) random variable, then 1/ X is a Cauchy (μ / C, σ / C) random variable where C = μ2 + σ2. If X is an F (ν1, ν2) random ...
Probability density functions (pdfs) and probability mass functions are denoted by lowercase letters, e.g. , or . Cumulative distribution functions (cdfs) are denoted by uppercase letters, e.g. , or . In particular, the pdf of the standard normal distribution is denoted by , and its cdf by .
The beta negative binomial distribution contains the beta geometric distribution as a special case when either = or =. It can therefore approximate the geometric distribution arbitrarily well. It also approximates the negative binomial distribution arbitrary well for large α {\displaystyle \alpha } .
Distribution (mathematics) Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable ...