Search results
Results From The WOW.Com Content Network
In mathematics, to solve an equation is to find its solutions, which are the values (numbers, functions, sets, etc.) that fulfill the condition stated by the equation, consisting generally of two expressions related by an equals sign. When seeking a solution, one or more variables are designated as unknowns. A solution is an assignment of ...
The system + =, + = has exactly one solution: x = 1, y = 2 The nonlinear system + =, + = has the two solutions (x, y) = (1, 0) and (x, y) = (0, 1), while + + =, + + =, + + = has an infinite number of solutions because the third equation is the first equation plus twice the second one and hence contains no independent information; thus any value of z can be chosen and values of x and y can be ...
In mathematics, the theory of linear systems is a fundamental part of linear algebra, a subject which is used in many parts of modern mathematics. Computational algorithms for finding the solutions are an important part of numerical linear algebra, and play a prominent role in physics, engineering, chemistry, computer science, and economics.
In mathematics and logic, the term "uniqueness" refers to the property of being the one and only object satisfying a certain condition. [1] This sort of quantification is known as uniqueness quantification or unique existential quantification, and is often denoted with the symbols "∃!"
In mathematics, the solution set of a system of equations or inequality is the set of all its solutions, that is the values that satisfy all equations and inequalities. [1] Also, the solution set or the truth set of a statement or a predicate is the set of all values that satisfy it. If there is no solution, the solution set is the empty set. [2]
In mathematics, an extraneous solution (or spurious solution) is one which emerges from the process of solving a problem but is not a valid solution to it. [1] A missing solution is a valid one which is lost during the solution process.
Each free variable gives the solution space one degree of freedom, the number of which is equal to the dimension of the solution set. For example, the solution set for the above equation is a line, since a point in the solution set can be chosen by specifying the value of the parameter z. An infinite solution of higher order may describe a ...
Each solution (x, y) of a linear equation + + = may be viewed as the Cartesian coordinates of a point in the Euclidean plane. With this interpretation, all solutions of the equation form a line, provided that a and b are not both zero. Conversely, every line is the set of all solutions of a linear equation.